skip to main content


Title: The Relation of N‐S Auroral Streamers to Auroral Expansion
Abstract

We investigate the relation of fast flows at the inner edge of the plasma sheet to the onset of auroral expansion. Recent work suggests that nearly all expansions are an instability triggered by an auroral streamer from far out in the magnetotail. We investigate an 8‐hr interval of activity on 14 March 2008 using ground magnetometer and all‐sky camera data to determine the onset times of six substorm expansions. We compare these times with Time History of Events and Macroscale Interactions during Substorms observations of plasma flow and magnetic field. We show that every expansion followed the arrival of a fast flow and dipolarization event at the inner edge of the plasma sheet. To relate the aurora to flows, we develop procedures for removing fixed lights, the moving Moon and its reflection, and contamination due to scattered moonlight. We scan movies of enhanced images for auroral streamers. Three onsets were tentatively associated with streamers. For two, the apparent source was very close to the growth phase arc mapping close to Earth. For one, an onset occurred in the recovery phase of an earlier substorm after a double oval had formed. For this one, the end of an N‐S streamer stopped about 2° north of the breakup arc. For the remaining three expansions, no streamers were associated with the onsets. Most substorms exhibit N‐S streamers in the recovery phase. These usually cannot be associated with fast flows. Either fast flows in the growth phase do not produce streamers or they make streamers that require significant image enhancement.

 
more » « less
NSF-PAR ID:
10375292
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
4
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less
  2. Abstract

    To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h.

     
    more » « less
  3. Abstract

    The expansion phase of auroral substorms is characterized by the formation of an auroral bulge, and it is generally considered that a single bulge forms following each substorm onset. However, we find that occasionally two auroral intensifications takes place close in time but apart in space leading to the formation of double auroral bulges, which later merge into one large bulge. We report three such events. In those events the westward auroral electrojet intensified in each auroral bulge, and geosynchronous magnetic field dipolarized in the same sector. It appears that two substorms took place simultaneously, and each substorm was accompanied by the formation of its own substorm current wedge system. This finding strongly suggests that the initiation of auroral substorms is a local process, and there is no global reference frame for their development. For example, ideas such as (i) the auroralbreakup takes place in the vicinity of the Harang reversal and (ii) the westward traveling surge maps to the interface between the plasma sheet and low‐latitude boundary layer, do not necessarily hold for every substorm. Even if those ideas may be suggestive of causal magnetospheric processes, the reference structures themselves are probably not essential. It is also found that despite the formation of two distinct auroral bulges, the overall magnetosphere‐ionosphere current system is represented by one globally coherent system, and we suggest that its structure is determined by the relative intensities and locations of the two substorm current wedges that correspond to the individual auroral bulges.

     
    more » « less
  4. Abstract

    Following substorm auroral onset, the active aurora region usually expands poleward toward the poleward auroral boundary. Such poleward expansion is often associated with a bulge region that expands westward and forms the westward travelling surge. In this study, we show all‐sky imager and Poker Flat Advanced Modular Incoherent Scatter Radar observations of two surge events to investigate the relationship between the surge and ionospheric flows that likely have polar cap origin. For both events, we observe auroral streamers, with an adjacent flow channel consisting of decreased density and low electron temperature plasma flowing equatorward. This flow channel appears to impinge and lead/feed surge formation, and to stay connected to the surge as it moves westward. Also, for both events, streamer observations indicate that, following initial surge development, similar flows led to explosive surge enhancements. The observation that the streamers are connected to the auroral polar boundary and that the flow channels consisted of low density, low electron temperature plasma suggests the possibility that the impinging plasma came from the polar cap. For both events, the altitude variations of F region plasma within the surges are related with aurora emission and the poleward/equatorward flow, and the surges develop strong auroral streamers that initiate along the poleward auroral boundary when contacted with the flow. These results suggest that the flow of polar cap origin, which maps to underlying processes in the magnetotail, may play a crucial role in auroral surges by feeding low entropy plasma into surge initiation and development, and also playing an important role in the dynamics within a surge.

     
    more » « less
  5. Abstract

    This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high‐resolution Lyon‐Fedder‐Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, including overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.

     
    more » « less