skip to main content

Title: Global Controls on DOC Reaction Versus Export in Watersheds: A Damköhler Number Analysis

The relative capacity for watersheds to eliminate or export reactive constituents has important implications on aquatic ecosystem ecology and biogeochemistry. Removal efficiency depends on factors that affect either the reactivity or advection of a constituent within river networks. Here, we characterized Damköhler number (Da) for dissolved organic carbon (DOC) uptake in global river networks. Da equals the advection to reaction timescale ratio and thus provides a unitless indicator for DOC reaction intensity during transport within river networks. We aim to demonstrate the spatial and temporal patterns and interplays among factors that determine DOC uptake across global river networks. We show that watershed size imposes a primary control on river network DOC uptake due to a three orders of magnitude difference in water residence time (WRT) between the smallest and largest river networks. DOC uptake capacity in tropical river networks is 2–6 times that in temperate and the Arctic river networks, coinciding with larger DOC removals in warm than in cold watersheds. River damming has a profound impact on DOC uptake due to significantly extended WRTs, particularly in temperate watersheds where most constructed dams are situated. Global warming is projected to increase river network DOC uptake by ca. 19% until year 2100 under the RCP4.5 scenario.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The origin and reactivity of dissolved organic matter (DOM) have received attention for decades due to the key role DOM plays in global carbon cycling and the ecology of aquatic systems. However, DOM dynamics in river networks remain unresolved, hampered by the lack of data integrating the spatial and temporal dimensions inherent to riverine ecosystems. Here we examine the longitudinal patterns of dissolved organic carbon (DOC) concentration and DOM chemical diversity along a temperate river network under different hydrological conditions, encompassing small headwater streams to the river mouth and base flow to storm events. We show that, during nonstorm conditions, the concentration of DOC and the chemical diversity of DOM exhibit their maxima in the middle section of the network, depicting a bell‐shaped pattern along the river continuum. In contrast, DOM shows a homogeneous longitudinal pattern during storm events, with highly concentrated and diverse DOM along the river network. We posit that these emerging patterns result from changes in the relative influence of catchment versus in‐stream biogeochemical processes along the river continuum and that the degree of influence is modulated by river network hydrology. Based on these findings we put forward the “Bending DOM Concept,” a new conceptual framework around which testable hypotheses on the spatiotemporal dynamics of DOM and the functioning of temperate river networks may be formulated.

    more » « less
  2. Abstract

    Dissolved organic carbon (DOC) is a key variable impacting stream biogeochemical processes. The relationship between DOC concentration (C) and stream discharge (q) can elucidate spatial and temporal DOC source dynamics in watersheds. In the ephemeral glacial meltwater streams of the McMurdo Dry Valleys (MDV), Antarctica, the C‐qrelationship has been applied to dissolved inorganic nitrogen and weathering solutes including silica, which all exhibit chemostatic C‐qbehavior; but DOC‐qdynamics have not been studied. DOC concentrations here are low compared to temperate streams, in the range of 0.1–2 mg C l−1, and their chemical signal clearly indicates derivation from microbial biomass (benthic mats and hyporheic biofilm). To investigate whether the DOC generation rate from these autochthonous organic matter pools was sufficient to maintain chemostasis for DOC, despite these streams' large diel and interannual fluctuations in discharge, we fit the long‐term DOC‐qdata to a power law and an advection‐reaction model. Model outputs and coefficients of variation characterize the DOC‐qrelationship as chemostatic for several MDV streams. We propose a conceptual model in which hyporheic carbon storage, hyporheic exchange rates, and net DOC generation rates are key interacting components that enable chemostatic DOC‐qbehavior in MDV streams. This model clarifies the role of autochthonous carbon stores in maintaining DOC chemostasis and may be useful for examining these relationships in temperate systems, which typically have larger sources of bioavailable autochthonous organic carbon than MDV streams but where this autochthonous signal could be masked by a stronger allochthonous contribution.

    more » « less
  3. Abstract

    Sunlight can oxidize dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in freshwaters. The importance of complete photooxidation, or photomineralization, as a sink for DOC remains unclear in temperate rivers, as most estimates are restricted to lakes, high latitude rivers, and coastal river plumes. In this study, we construct a model representing over 75,000 river reaches in the Connecticut River Watershed (CRW), USA, to calculate spectrally resolved photomineralization. We test the hypothesis that photomineralization is a negligible DOC sink across all reaches and flow conditions relative to DOC fluxes. Our model quantifies reaction rates and transport drivers within the river reaches for the ranges of flow conditions, incoming solar irradiance, and canopy cover shading observed throughout the year. Our model predicts average daily areal photomineralization rates ranging from 1.16 mg‐C m−2 day−1in low flow river reaches in the winter, to 18.33 mg‐C m−2 day−1in high flow river reaches during the summer. Even for high photomineralization fluxes, corresponding photomineralization uptake velocities are typically at least an order of magnitude smaller than those reported for other instream processes. We calculate DOC elimination by photomineralization relative to DOC fluxes through individual stream reaches as well as the entire riverine portion of the CRW. We find that relative photomineralization fluxes are highest in summer drought conditions in low order streams. In median flows and mean light intensities, for an average watershed travel distance, 3%–5% of the DOC fluxes are eliminated, indicating that photomineralization is a minor DOC sink in temperate rivers.

    more » « less
  4. Abstract

    River networks transport dissolved organic carbon (DOC) from terrestrial uplands to the coastal ocean. The extent to which a reach or lake within a river network uptakes DOC depends on the stream order, the seasonal conditions, and the flow. At the watershed scale, it remains unclear whether DOC uptake is dominated by biological processes such as respiration, or abiotic processes like photomineralization. The partitioning of DOC uptake in lakes vs. rivers is also unclear. In this study, we present a new model that unifies year‐round controls on DOC cycling for an entire river network, including river–lake connectivity, to elucidate the importance of biotic vs. abiotic controls on DOC uptake. We present the Catchment UPtake and Sinks by Season, Order, and Flow for DOC (CUPS‐OF‐DOC) model, which quantifies terrestrial DOC loading, gross primary productivity, and uptake via microbes and photomineralization. The model is applied to the Connecticut River Watershed, and accounts for cascading reach‐ and lake‐scale DOC cycling across 98 scenarios spanning combinations of flows, seasons, and stream orders. We show that riverine DOC uptake is nearly constant with stream order, but the proportion of DOC uptake from photomineralization varies. Photomineralization dominates in rivers in most flow conditions and stream orders, especially in winter, accounting for at least half of whole‐watershed DOC uptake in February across all flows. Whole‐watershed summer DOC uptake occurs mostly via biomineralization in lakes, accounting for 80% of DOC uptake during the growing season, despite accounting for less than 6% of watershed open water surface area.

    more » « less
  5. Abstract

    Inland waters are an important component of the global carbon budget. However, our ability to predict carbon fluxes from stream systems remains uncertain, aspCO2varies within streams at scales of 1–100 m. This makes direct monitoring of large‐scale CO2fluxes impractical. We incorporate CO2input and output fluxes into a stream network advection‐reaction model, representing the first process‐based representation of stream CO2dynamics at watershed scales. This model includes groundwater (GW) CO2inputs, water column (WC), benthic hyporheic zone (BHZ) respiration, downstream advection, and atmospheric exchange. We evaluate this model against existing statistical methods including upscaling and multiple linear regressions through comparisons to high‐resolution streampCO2data collected across the East River Watershed in the Colorado Rocky Mountains (USA). The stream network model accurately captures GW, evasion, and respiration‐drivenpCO2variability and significantly outperforms multiple linear regressions for predictingpCO2. Further, the model provides estimates of CO2contributions from internal versus external sources suggesting that streams transition from GW‐ to BHZ‐dominated sources between 3rd and 4th Strahler orders, with GW, BHZ, and WC accounting for 49.3%, 50.6%, and 0.1% of CO2fluxes from the watershed, respectively. Lastly, stream network model atmospheric CO2fluxes are 4‐12x times smaller than upscaling technique predictions, largely due to relationships between streampCO2and gas exchange velocities. Taken together, this stream network model improves our ability to predict stream CO2dynamics and efflux. Furthermore, future applications to regional and global scales may result in a significant downward revision of global flux estimates.

    more » « less