skip to main content


Title: Simulation and Observations of the Polar Tongue of Ionization at Different Heights During the 2015 St. Patrick's Day Storms
Abstract

We present the observational and modeling study focused on the major factors determining the spatiotemporal structure of the high‐latitude ionospheric plasma density enhancement—the tongue of ionization (TOI) structure—during the 2015 St. Patrick's Day geomagnetic storm. We use the Global Self‐consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP) to reproduce the plasma density distribution, and the results are compared with the observational data as deduced from the ground‐based global positioning system total electron content and in situ plasma probe measurements at different altitudes. Both the simulation and observation results show that a large‐scale TOI‐like structure of enhanced plasma density extends from the dayside midlatitude region toward the central polar cap along the antisunward cross‐polar convection flow. We reveal an important role of the clockwise convection cell rotation for the modification of TOI structure. According to model results during the storm main phase, the neutral thermospheric composition, particularly the “tongue” in n(N2), modifies the spatial structure of TOI in such a way that (1) the near‐pole region of enhanced plasma density is shifted to the duskside and, (2) atFregion heights, the TOI is split into the dusk and dawn branches. The signature of TOI in the topside ionosphere considerably differs from that in theFregion because of a lesser influence of the neutral composition changes at higher altitudes. Model results revealed that at plasmaspheric heights, the TOI structure appears in both the dawn and dusk convection cells.

 
more » « less
NSF-PAR ID:
10375368
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
17
Issue:
7
ISSN:
1542-7390
Page Range / eLocation ID:
p. 1073-1089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is still an inadequate understanding of how the interplanetary magnetic field (IMF) east‐west component (By) affects thermospheric composition, and other ionospheric and thermospheric fields in a systematic way. Utilizing the state‐of‐art first‐principles Coupled Magnetosphere Ionosphere Thermosphere (CMIT) modeling and TIMED/Global Ultraviolet Imager (GUVI)‐observed ΣO/N2covering an entire solar cycle (year 2002–2016), as well as a neutral parcel trajectory tracing technique, we emphasize that not only the direction ofBy, but also its strength relative to the IMF north‐south component (Bz) that has important effects on high latitude convection, Joule heating, electron density, neutral winds, and neutral composition patterns in the upper thermosphere. The Northern Hemisphere convection pattern becomes more twisted for positiveBycases than negative cases: the dusk cell becomes more rounded compared with the dawn cell. Consequently, equatorward neutral winds are stronger during postmidnight hours in negativeBycases than in positiveBycases, creating a favorable condition for neutral composition disturbances (characterized by low ΣO/N2) to expand to lower latitudes. This may lead to a more elongated ΣO/N2depletion area along the morning‐premidnight direction for negativeByconditions compared with the positiveByconditions. Backward neutral parcel trajectories indicate that a lower ΣO/N2parcel in negativeBycases comes from lower altitudes, as compared with that for positiveBycases, leading to larger enhancements of N2in the former case.

     
    more » « less
  2. Abstract

    The occurrence of St. Patrick's Day (17 March) geomagnetic storms during two different years (2013 and 2015) with similar solar flux levels but varying storm intensity provided an opportunity to compare and contrast the responses of the ionosphere‐thermosphere (IT) system to different levels of geomagnetic activity. The evolution of positive ionospheric storms at the southern polar stations Bharati (76.6°S MLAT) and Davis (76.2°S MLAT) and its causative connection to the solar wind driving mechanisms during these storms has been investigated in this paper. During the main phase of both the storms, significant enhancements in TEC and phase scintillation were observed in the magnetic noon/ midnight period at Bharati and Davis. The TEC in the midnight sector on 17 March 2015 was significantly higher compared to that on 17 March 2013, in line with the storm intensity. The TEC enhancements during both the storm events are associated with the formation of the storm‐enhanced densities (SEDs)/tongue of ionization (TOI). The strong and sustained magnetopause erosion led to the prevalence of stronger storm time electric fields (prompt penetration electric field (PPEF)/subauroral polarization streams (SAPS)) for long duration on 17 March 2015. This combined with the action of neutral winds at midlatitudes favored the formation of higher plasma densities in the regions of SED formation on this day. The same was weaker during the 17 March 2013 storm due to the fast fluctuating nature of interplanetary magnetic field (IMF)Bz. This study shows that the duration and extent of magnetopause erosion play an important role in the spatiotemporal evolution of the plasma density distribution in the high‐midlatitude ionosphere.

     
    more » « less
  3. Abstract

    The National Aeronautics and Space Administration Global‐scale Observations of the Limb and Disk (GOLD) mission observed a unique structure of thermospheric column density ratio of O to N2(∑O/N2) during a geomagnetic storm on day of year (DOY) 130 (May 10) to DOY 132 in 2019. The percentage difference of ∑O/N2between the storm time (DOY 131) and the quiet time (DOY 128) had a relatively enhanced ∑O/N2region sandwiched by two depleted regions over North America and the Atlantic Ocean in the Northern Hemisphere. This enhanced ∑O/N2region is called the neutral tongue here. The National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model also predicted a similar ∑O/N2structure with the same spatial and temporal evolution as that seen in the GOLD observations on DOY 131. Model diagnostic analysis revealed that the neutral tongue was formed when the neutral wind in the region changed from mostly equatorward to poleward, which transported the ∑O/N2rich air from lower latitudes into this longitude section, forming the neutral tongue. The neutral tongue separated a large depletion region formed earlier into two smaller depleted regions, one on each side of the neutral tongue.

     
    more » « less
  4. Abstract

    The high‐resolution thermosphere‐ionosphere‐electrodynamics general circulation model has been used to investigate the response ofF2region electron density (Ne) at Millstone Hill (42.61°N, 71.48°W, maximum obscuration: 63%) to the Great American Solar Eclipse on 21 August 2017. Diagnostic analysis of model results shows that eclipse‐induced disturbance winds causeF2region Ne changes directly by transporting plasma along field lines, indirectly by producing enhanced O/N2ratio that contribute to the recovery of the ionosphere at and below theF2peak after the maximum obscuration. Ambipolar diffusion reacts to plasma pressure gradient changes and modifies Ne profiles. Wind transport and ambipolar diffusion take effect from the early phase of the eclipse and show strong temporal and altitude variations. The recovery ofF2region electron density above theF2peak is dominated by the wind transport and ambipolar diffusion; both move the plasma to higher altitudes from below theF2peak when more ions are produced in the lowerF2region after the eclipse. As the moon shadow enters, maximizes, and leaves a particular observation site, the disturbance winds at the site change direction and their effects on theF2region electron densities also vary, from pushing plasma downward during the eclipse to transporting it upward into the topside ionosphere after the eclipse. Chemical processes involving dimming solar radiation and changing composition, wind transport, and ambipolar diffusion together cause the time delay and asymmetric characteristic (fast decrease of Ne and slow recovery of the eclipse effects) of the topside ionospheric response seen in Millstone Hill incoherent scatter radar observations.

     
    more » « less
  5. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less