skip to main content


Title: Superposed Epoch Analyses of Electron‐Driven and Proton‐Driven Magnetic Dips
Abstract

In this study, we statistically investigate the features of magnetic dips by constructing superposed epoch analysis on Van Allen Probe data. Based on the values of electron and proton plasma betas, we categorize dips into two types: electron‐dominant and proton‐dominant. The global distributions of dips are obtained. Superposed epoch analysis on two types reveals a correlation between the magnetic fluctuations and plasma betas. Moreover, the occurrences of butterfly pitch angle distributions of relativistic electrons driven by the magnetic dips are confirmed on a statistical basis. Our results reveal the statistical characteristics of magnetic dips and establish the relationship among the magnetic fluctuations and background plasma parameters, indicating the potentially important role of magnetic dips in the inner magnetosphere dynamics.

 
more » « less
NSF-PAR ID:
10375384
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, a magnetic dip event in which a small‐scale magnetic dip is embedded within a large‐scale magnetic dip is analyzed based on the observations of the Van Allen Probes. The small‐scale dip is contributed by a sharp electron injection at the energy range of 1 to 10 keV, but the large‐scale dip is contributed by a smooth proton injection at the energy range higher than 10 keV. The formation of dip caused by the suprathermal electrons is supported by the self‐consistent magnetic model. Moreover, the echoes of butterfly distributions of relativistic electrons at the energy range of 0.5 to 3.4 MeV is observed. The time separations of the neighboring butterfly distributions are comparable to the drift periods of the electrons at the different energies. We suggest that the potential nonadiabatic processes in response to the magnetic dips possibly account for the butterfly distribution echoes.

     
    more » « less
  2. Abstract

    We investigate the response of outer radiation belt electron fluxes to different solar wind and geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation during 19 enhancement and 7 depletion events and demonstrate the feature attribution analysis called SHAP (SHapley Additive exPlanations) on the superposed epoch results for the first time. We find that the intensity and duration of the substorm sequence following an initial dropout determine the overall enhancement or depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events. Further statistical results from a data set with 71 events confirm this and show a significant correlation between the resulting flux levels and the average AL index, indicating that the observed “depletion” event can be more accurately described as a “non‐enhancement” event. Our novel SHAP‐Enhanced Superposed Epoch Analysis (SHESEA) method can offer insight in various physical systems.

     
    more » « less
  3. The effect of the turbulence that is associated with solar wind corotating interaction regions (CIRs) on transport of galactic cosmic rays remains an outstanding problem in space science. Observations show that the intensities of the plasma and magnetic fluctuations are enhanced within a CIR. The velocity shear layer between the slow and fast wind embedded in a CIR is thought to be responsible for this enhancement in turbulent energy. We perform physics-based magnetohydrodynamic simulations of the plasma background and turbulent fluctuations in the solar wind dominated by CIRs for radial distances between 0.3 and 5 au. A simple but effective approach is used to incorporate the inner boundary conditions for the solar wind and magnetic field for the periods 2007–2008 and 2017–2018. Legendre coefficients at the source surface obtained from the Wilcox Solar Observatory library are utilized for dynamic reconstructions of the current sheet and the fast and slow streams at the inner boundary. The dynamic inner boundary enables our simulations to generate CIRs that are reasonably comparable with observations near Earth. While the magnetic field structure is reasonably well reproduced, the enhancements in the turbulent energy at the stream interfaces are smaller than observed. A superposed epoch analysis is performed over several CIRs from the simulation and compared to the superposed epoch analysis of the observed CIRs. The results for the turbulent energy and correlation length are used to estimate the diffusion tensor of galactic cosmic rays. The derived diffusion coefficients could be used for more realistic modeling of cosmic rays in a dynamically evolving inner heliosphere. 
    more » « less
  4. Abstract

    We performed the first systematic analysis of pickup ion (PUI) cutoff speed variations, across compression regions and due to fast fluctuations in solar wind (SW) speed and magnetic field strength. This study is motivated by the need to remove or correct for systematic effects on the determination of the interstellar flow longitude based on the longitudinal variation of the PUI cutoff. Using 2007–2014 STEREO A PLASTIC observations, we identified SW compression regions and accumulated the contained PUI velocity distributions in a superposed epoch analysis. The shift of the cutoff in velocity, interpreted as PUI energization, varies systematically across the compression region and increases approximately linearly with the speed gradient of the compression. Additionally, the shift remains positive into the negative speed gradient at the beginning of the rarefaction region. A similar response is found when PUI distributions are sorted according to the strength of fast fluctuations in SW speed, density, and magnetic field strength. These parameters remain high in the first part of the rarefaction region, suggesting a possible PUI energization through compressive turbulence. Based on these results, we removed the strongest compression regions from the interstellar flow analysis, finding no significant change in direction or uncertainty. Thus, we have revealed the influence of adiabatic compression and compressive turbulence, increasing the PUI cutoff energy, and we have demonstrated that the determination of the interstellar inflow direction via analysis of PUI distributions is robust for a multiyear data set, even in the presence of SW interaction regions.

     
    more » « less
  5. Abstract

    We present the first observations of electrostatic solitary waves with electrostatic potential of negative polarity around a fast plasma flow in the Earth's plasma sheet. The solitary waves are observed aboard four Magnetospheric Multiscale spacecraft, which allowed accurately estimating solitary wave properties. Based on a data set of 153 solitary waves, we show that they are locally one‐dimensional Debye‐scale structures with amplitudes up to 20% of local electron temperature and they propagate at plasma frame speeds ranging from a tenth to a few ion‐acoustic speeds at arbitrary angles to the local magnetic field. The solitary waves are associated with multi‐component proton distributions and their velocities are around those of a beam‐like proton population. We argue that the solitary waves are ion holes, nonlinear structures produced by ion‐streaming instabilities, and conclude that once ions are not magnetized, ion holes can propagate oblique to local magnetic field.

     
    more » « less