skip to main content

Title: Karavannoe: Mineralogy, trace element geochemistry, and origin of Eagle Station group pallasites

Karavannoe is a pallasite found in Russia in 2010. The mineralogy, chemistry, and oxygen isotopic composition indicate that Karavannoe is a member of the Eagle Station Pallasite (ESP) group. Karavannoe contains mostly olivine and subdued interstitial Fe,Ni‐metal. Zoned distribution of FeO in small, rounded grains of olivine and FeO and Al2O3in chromite shows that the cooling rate of the melt was fast during the crystallization of the round olivine grains. Siderophile element distribution and correlations of Au‐As and Os‐Ir concentrations in Karavannoe and the other ESP metal record its magmatic origin. FeO‐rich composition of olivine, low W and Ga, and high Ni abundances in the Karavannoe metal indicate the formation of the metal from an oxidized chondrite precursor. Model calculations demonstrate that the ESPs’ metal compositions correspond to the solids of the fractional crystallization of CV‐ or CO‐chondrite‐derived metallic liquids. The Karavannoe metal composition corresponds to the solid fraction crystallized after ~40% fractional crystallization. The Mg/(Mg+Fe) atom ratio of complementary silicate liquid corresponds to Fo70, possibly indicating that the olivine is not in equilibrium with the metal and could have been a product of the late evolutionary processes in the Karavannoe parent body mantle. In any ESP genesis Karavannoe was not in equilibrium with its metal and is a product of mantle differentiation processes. Olivine of Karavannoe and ESPs is similar in composition, while the metal is different. We propose a model of ESP formation involving an impact‐induced intrusion of liquid core metal into a basal mantle layer, followed by fractional crystallization of the metal. The metal textures and chemical zoning of Karavannoe minerals point to remelting and rapid cooling due to a later impact event.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Meteoritics & Planetary Science
Page Range / eLocation ID:
p. 1158-1173
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the structural and chemical analyses of six presolar silicate grains identified in situ in the CO3.0 carbonaceous chondrite Dominion Range (DOM) 08006. Two of the grains have O‐isotopic compositions consistent with origins in the circumstellar envelopes of low‐mass (<2M) asymptotic giant branch (AGB)/red giant branch (RGB) stars, although without Mg‐isotopic data, origins in supernovae (SNe) cannot be ruled out. The other four grains have O‐isotopic compositions consistent with origins in the ejecta of type‐II SNe. Transmission electron microscopy analyses reveal that all grains are crystalline (single crystal or polycrystalline) and have varied compositions. The analyzed AGB/RGB grains include an Fe‐rich crystalline olivine with an Fe‐sulfide inclusion and a chemically zoned olivine grain that also contains an Fe‐oxide rim. The grains derived from SNe include two polycrystalline assemblages with structures that overlap with both olivine and pyroxene, an assemblage composed of both a single crystal of forsterite and polycrystalline forsterite, and an orthopyroxene grain with an embedded Fe‐sulfide crystal. The thermodynamic origins of both AGB/RGB and SN grains are also diverse. The structure and compositions of two grains are consistent with equilibrium thermodynamic predictions of condensation, whereas four are not, suggesting formation through nonequilibrium or multistep processes. Our observations of presolar silicate grains suggest that the circumstellar envelopes of AGB/RGB stars and the ejecta of SNe can produce grains with comparable structures and compositions.

    more » « less
  2. Abstract

    The Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT(=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔTfor all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings.

    more » « less
  3. Loveringite, a rare member of the crichtonite group with nominal formula (Ca,Ce)(Ti,Fe,Cr,Mg)21O38, was found in the Khamal layered mafic intrusion, the first known locality for this mineral in the Arabian Shield. The Khamal intrusion, a large post-collisional mafic complex, is lithologically zoned, bottom to top, from olivine gabbro through gabbronorite, hornblende gabbro, anorthosite, and diorite to quartz diorite. Loveringite is found near the base of the complex, as an intercumulus phase in olivine gabbro. Most loveringite grains are homogeneous, although a few grains are zoned from cores rich in TiO2, Al2O3, Cr2O3, and CaO towards rims rich in FeO*, ZrO2, V2O3, Y2O3, and rare earth elements (REE). Petrographic relations indicate that loveringite formed after crystallization of cumulus olivine, pyroxenes, and plagioclase. Anhedral and corroded crystals of loveringite are surrounded by reaction rims of Mn-bearing ilmenite and baddeleyite, suggesting that the residual liquid evolved into and subsequently out of the stability field of loveringite. The budget of incompatible elements (Zr, Hf, REE, U, and Th) hosted in loveringite is anomalous for a primitive mafic liquid. Saturation in loveringite is likely the result of early contamination of the primary melt by anatexis of country rock, followed by isolation of evolving liquid in intercumulus space that restricted communication with the overlying magma chamber. The zoned crystals likely reflect diffusive equilibration between residual loveringite grains and their reaction rims of ilmenite. 
    more » « less
  4. Both seismic observations of dense low shear velocity regions and models of magma ocean crystallization and mantle dynamics support enrichment of iron in Earth’s lowermost mantle. Physical properties of iron-rich lower mantle heterogeneities in the modern Earth depend on distribution of iron between coexisting lower mantle phases (Mg,Fe)O magnesiowüstite, (Mg,Fe)SiO3 bridgmanite, and (Mg,Fe)SiO3 post-perovskite. The partitioning of iron between these phases was investigated in synthetic ferrous-iron-rich olivine compositions (Mg0.55Fe0.45)2SiO4 and (Mg0.28Fe0.72)2SiO4 at lower mantle conditions ranging from 33–128 GPa and 1900–3000 K in the laser-heated diamond anvil cell. The resulting phase assemblages were characterized by a combination of in situ X-ray diffraction and ex situ transmission electron microscopy. The exchange coefficient between bridgmanite and magnesiowüstite decreases with pressure and bulk Fe# and increases with temperature. Thermodynamic modeling determines that incorporation and partitioning of iron in bridgmanite are explained well by excess volume associated with Mg-Fe exchange. Partitioning results are used to model compositions and densities of mantle phase assemblages as a function of pressure, FeO-content and SiO2-content. Unlike average mantle compositions, iron-rich compositions in the mantle exhibit negative dependence of density on SiO2-content at all mantle depths, an important finding for interpretation of deep lower mantle structures. 
    more » « less
  5. Abstract

    Recharges of magma underneath basaltic volcanoes can occur as precursory events prior to an eruption but are not always revealed in geophysical data streams or erupted lavas compositions. In contrast, phosphorus within primitive, Mg‐rich (Fo89‐90), olivine can preserve recharge information lost by the mixed melt. Evidence of rapid growth and dissolution are preserved only in phosphorus X‐ray intensity maps, which reveal that Mg‐rich olivine from eruptions occurring between 2008 and 2020 at Kīlauea Volcano (Hawaiʻi) experienced at least two episodes of magma intrusion. We develop numerical diffusion models that evaluate the fidelity of the Fe‐Mg compositional archive by quantifying three factors that influence Fo population distributions: (a) the frequency at which an Mg‐rich basaltic liquid (in equilibrium with Fo90olivine) intrudes the reservoir, (b) the pre‐existence of a polymodal distribution of olivine crystal sizes and their shapes (c) the effects of sectioning on apparent olivine core compositions. We find that most crystals lose their initial Mg‐rich composition if they are held at temperatures relevant to summit magma storage conditions (1,160–1,190°C) for more than 10 years. Thus, previous assertions that Mg‐rich olivine crystals at Kīlauea are scavenged from centuries‐old stored magmas are unrealistic. Our method permits critical evaluation of contrasting explanations of heterogeneous Fe‐Mg contents of olivine cargo: (a) different total durations of mush storage with partial diffusive erasure of compositional traits, or (b) coexistence of multiple chemically distinct magmas. Our approach provides general guidance for the conservative interpretation of temporal information preserved within olivine Fe‐Mg compositional archives.

    more » « less