skip to main content


Title: Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow
Abstract

We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance.

 
more » « less
NSF-PAR ID:
10375418
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is well‐known that solar eclipses can significantly impact the ionosphere and thermosphere, but how an eclipse influences the magnetosphere‐ionosphere system is still unknown. Using a coupled magnetosphere‐ionosphere‐thermosphere model, we examined the impact on geospace of the northern polar‐region eclipse that occurred on June 10, 2021. The simulations reveal that the eclipse‐induced reduction in polar ionospheric conductivity causes large changes in field‐aligned current, cross‐polar cap potential and auroral activity. While such effects are expected in the northern hemisphere where solar obscuration occurred, they also occurred in the southern hemisphere through electrodynamic coupling. Eclipse‐induced changes in monoenergetic auroral precipitation differ significantly between the northern hemisphere and southern hemisphere while diffuse auroral precipitation is interhemispherically symmetric. This study demonstrates that the geospace response to a polar‐region solar eclipse is not limited just to the eclipse region but has global implications.

     
    more » « less
  2. Abstract

    Polar cap ionospheric plasma flow studies often focus on large‐scale averaged properties and neglect the mesoscale component. However, recent studies have shown that mesoscale flows are often found to be collocated with airglow patches. These mesoscale flows are typically a few hundred meters per second faster than the large‐scale background and are associated with major auroral intensifications when they reach the poleward boundary of the nightside auroral oval. Patches often also contain ionospheric signatures of enhanced field‐aligned currents and localized electron flux enhancements, indicating that patches are associated with magnetosphere‐ionosphere coupling on open field lines. However, magnetospheric measurements of this coupling are lacking, and it has not been understood what the magnetospheric signatures of patches on open field lines are. The work presented here explores the magnetospheric counterpart of patches and the role these structures have in plasma transport across the open field‐line region in the magnetosphere. Using red‐line emission measurements from the Resolute Bay Optical Mesosphere Thermosphere Imager, and magnetospheric measurements made by the Cluster spacecraft, conjugate events from 2005 to 2009 show that lobe measurements on field lines connected to patches display (1) electric field enhancements, (2) Region 1 sense field‐aligned currents, (3) field‐aligned enhancements in soft electron flux, (4) downward Poynting fluxes, and (5) in some cases enhancements in ion flux, including ion outflows. These observations indicate that patches highlight a localized fast flow channel system that is driven by the magnetosphere and propagates from the dayside to the nightside, most likely being initiated by enhanced localized dayside reconnection.

     
    more » « less
  3. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system.

     
    more » « less
  4. Abstract

    During magnetospheric substorms, high‐latitude ionospheric plasma convection is known to change dramatically. How upper thermospheric winds change, however, has not been well understood, and conflicting conclusions have been reported. Here, we study the effect of substorms on high‐latitude upper thermospheric winds by taking advantage of a chain of scanning Doppler imagers (SDIs), THEMIS all‐sky imagers (ASIs), and the Poker Flat incoherent scatter radar (PFISR). SDIs provide mosaics of wind dynamics in response to substorms in two dimensions in space and as a function of time, while ASIs and PFISR concurrently monitor auroral emissions and ionospheric parameters. During the substorm growth phase, the classical two‐cell global circulation of neutral winds intensifies. After substorm onset, the zonal component of these winds is strongly suppressed in the midnight sector, whereas away from the midnight sector two‐cell circulation of winds is enhanced. Both pre and postonset enhancements are ≥100 m/s above the quiet‐time value, and postonset enhancement occurs over a broader latitude and local‐time area than preonset enhancement. The meridional wind component in the midnight and postmidnight sectors is accelerated southward to subauroral latitudes. Our findings suggest that substorms significantly modify the upper‐thermospheric wind circulation by changing the wind direction and speed and therefore are important for the entire magnetosphere‐ionosphere‐thermosphere system.

     
    more » « less
  5. Abstract

    In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense.

     
    more » « less