skip to main content


Title: Energy Balance and Time Dependence of a Magnetotail Electron Diffusion Region
Abstract

We examine the 11 July 2017 electron diffusion region (EDR)observed by the MagnetosphericMultiscale (MMS) mission using Poynting's theorem. The terms in Poynting's theorem are determined using a linear gradient approximation to obtain barycentric averages within the MMS tetrahedron. We find that Poynting's theorem is approximately balanced in the EDR and the balance is improved if the calculation ofis restricted to the LN plane. The work rate per unit volumeis mostly balanced by the divergence of the electromagnetic energy flux, indicating that the electromagnetic energy density remains relatively constant within the EDR during the encounter. We also use particle‐in‐cell (PIC) simulations to examine Poynting's theorem near an x line evolving in time. The central EDR in the simulation is characterized by approximate time independent balance in Poynting's theorem during reconnection growth, while the outer EDR exhibits time‐dependent fluctuations indicative of more chaotic behavior.

 
more » « less
NSF-PAR ID:
10375438
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
11
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During the 9 March 2018 event with two consecutive interplanetary shocks compressing the dayside magnetosphere, the azimuthal mode structure and frequency spectrum of ultra low frequency magnetic pulsations are resolved using a cross‐spectral analysis based on high‐fidelity multi‐probe Magnetospheric Multiscale Mission (MMS) magnetometer data. The results based on the MMS 4 and MMS 3 pair of measurements show that shock arrival leads to low mode () magnetic fluctuations in the Pc4‐5 regimes, and smaller spatial scale fluctuations implied by the dominant high mode numbers are observed after both shock signatures hit and passed the magnetosphere. Detailed evolution of the mode structure is also shown for the first shock to reveal the development of high mode structure from a bump‐on‐tail distribution atto a dominant peak atin about 10 min. In addition, an interesting change of sign infrom negative to positive is observed as MMS crosses ∼11 MLT pre‐noon, which is consistent with the picture of wave generation by dayside magnetopause compression and then anti‐sunward propagation. For both shocks, the contribution of higher frequency waves (Pc‐4 range compared with Pc‐5) to the total wave power is found to be negligible before and after the shock impact, but it becomes more significant during the shock impact.

     
    more » « less
  2. Abstract

    Storm‐time broadband electromagnetic field variations along the interface between the dipolar field of the Earth's inner‐magnetosphere and the stretched fields of the plasma‐sheet are decomposed as a superposition of fluid‐kinetic modes. Using model eigen‐vectors operating on the full set of Van Allen Probes fields measurements it is shown how these variations are composed of a broad spectrum of dispersive Alfvén waves with significant spectral energy densities in the fast and slow modes over scales extending into the kinetic range. These modes occupy volumes in‐space that define the field variations observed at each spacecraft frame frequency (). They are in aggregate not necessarily planar and often comprise filamentary structures with no distinct propagation direction in the perpendicular plane. Within these volumes the characteristic parallel phase speeds of the fast and Alfvénic modes coincide over a broad range ofsuggestive of coupling/conversion between modes.

     
    more » « less
  3. Abstract

    Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are frequently observed in Earth's foreshock, which can significantly disturb the bow shock and therefore the magnetosphere‐ionosphere system and can accelerate particles. Previous statistical studies have identified the solar wind conditions (high solar wind speed and high Mach number, etc.) that favor their generation. However, backstreaming foreshock ions are expected to most directly control how HFAs and FBs form, whereas the solar wind may partake in the formation process indirectly by determining foreshock ion properties. Using Magnetospheric Multiscale mission and Time History of Events and Macroscale Interactions during Substorms mission, we perform a statistical study of foreshock ion properties around 275 HFAs and FBs. We show that foreshock ions with a high foreshock‐to‐solar wind density ratio (>∼3%), high kinetic energy (>∼600 eV), large ratio of kinetic energy to thermal energy (>∼0.1), and large ratio of perpendicular temperature to parallel temperature (>∼1.4) favor HFA and FB formation. We also examine how these properties are related to solar wind conditions: high solar wind speed and oblique bow shock (angle between the interplanetary magnetic field and the bow shock normal) favor high kinetic energy of foreshock ions; foreshock ions have large ratio of kinetic energy to thermal energy at large(>30°); small(<30°), high Mach number, and closeness to the bow shock favor a high foreshock‐to‐solar wind density ratio. Our results provide further understanding of HFA and FB formation.

     
    more » « less
  4. Abstract

    We investigate waves close to the lower‐hybrid frequency in 12 magnetotail reconnection electron diffusion region (EDR) events with guide field levels of near‐zero to 30%. In about half of the events, the wave vector has a small component along the current sheet normal, consistent with known lower‐hybrid drift wave properties, but the perpendicular magnetic field fluctuations can be comparable or greater than the parallel component, a feature unique to the waves inside and adjacent to EDRs. Another new wave property is that the wave vector has a significant component along the current sheet normal in some events and completely along the normal for one event. In 1/4 of the events, theterm has a significant contribution to the wave electric field, possibly a feature of lower‐hybrid waves more likely to exist in the diffusion region than further away from the X‐line. Electron temperature variations are correlated with the wave potential, due to wave electric field acceleration and crossings at the corrugated separatrix region with different amounts of mixing between reconnection inflowing and outflowing populations. The latter also leads to the anti‐correlation between parallel and perpendicular temperature components. Using four‐spacecraft measurements, the magnetic field line twisting is demonstrated by the correlated fluctuations inand. The lower‐hybrid wave in the EDR of weak guide field reconnection may be generated near separatrices and penetrate to the mid‐plane or locally generated, and the latter possibility is beyond the prediction of previous reconnection simulations.

     
    more » « less
  5. Abstract

    Infrasound observations are increasingly used to constrain properties of volcanic eruptions. In order to better interpret infrasound observations, however, there is a need to better understand the relationship between eruption properties and sound generation. Here we perform two‐dimensional computational aeroacoustic simulations where we solve the compressible Navier‐Stokes equations for pure‐air with a large‐eddy simulation approximation. We simulate idealized impulsive volcanic eruptions where the exit velocity is specified and the eruption is pressure‐balanced with the atmosphere. Our nonlinear simulation results are compared with the commonly used analytical linear acoustics model of a compact monopole source radiating acoustic waves isotropically in a half space. The monopole source model matches the simulations for low exit velocities (m/s orwhereis the Mach number); however, the two solutions diverge as the exit velocity increases with the simulations developing lower peak amplitude, more rapid onset, and anisotropic radiation with stronger infrasound signals recorded above the vent than on Earth's surface. Our simulations show that interpreting ground‐based infrasound observations with the monopole source model can result in an underestimation of the erupted volume for eruptions with sonic or supersonic exit velocities. We examine nonlinear effects and show that nonlinear effects during propagation are relatively minor for the parameters considered. Instead, the dominant nonlinear effect is advection by the complex flow structure that develops above the vent. This work demonstrates the need to consider anisotropic radiation patterns and jet dynamics when interpreting infrasound observations, particularly for eruptions with sonic or supersonic exit velocities.

     
    more » « less