skip to main content


Title: Development and Evaluation of Chemistry‐Aerosol‐Climate Model CAM5‐Chem‐MAM7‐MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol
Abstract

An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5‐chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7‐mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode‐resolved thermodynamics and heterogeneous chemical reactions. Applied in the free‐running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement with observations and previous studies. Inclusion of nitrate resulted in ∼10% higher global average accumulation mode number concentrations, indicating enhanced growth of Aitken mode aerosols from nitrate formation. While the simulated accumulation mode nitrate burdens are high over the anthropogenic source regions, the sea‐salt and dust modes respectively constitute about 74% and 17% of the annual global average nitrate burden. Regional clear‐sky shortwave radiative cooling of up to −5 W m−2due to nitrate is seen, with a much smaller global average cooling of −0.05 W m−2. Significant enhancements in regional cloud condensation nuclei (at 0.1% supersaturation) and cloud droplet number concentrations are also attributed to nitrate, causing an additional global average shortwave cooling of −0.8 W m−2. Taking into consideration of changes in both longwave and shortwave radiation under all‐sky conditions, the net change in the top of the atmosphere radiative fluxes induced by including nitrate aerosol is −0.7 W m−2.

 
more » « less
NSF-PAR ID:
10375450
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
4
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We incorporate the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model Version 6 with interactive chemistry (CAM6‐chem), and couple it with the four mode version of the Modal Aerosol Module (MAM4). The MOSAIC module is used to simulate the thermodynamics of the gas‐aerosol mass exchange, with a special focus on simulating nitrate aerosol. By comparing against ground and satellite observations, we found that the MOSAIC/MAM4 scheme performs reasonably well in simulating spatiotemporal distributions of aerosols, including nitrate aerosol. We conducted a series of model experiments with and without nitrate aerosols, and examined the radiative effect (RE) associated with nitrate aerosols in 1975, 2000, and 2010, and accessed the radiative forcing (RF) of nitrate aerosols between the present day and pre‐industrial periods. Comparing with the nitrate aerosol RE, we predicted relatively small RF of anthropogenic nitrate aerosol from aerosol‐radiation interactions (RFari: −0.014 W m−2) and large RF from aerosol‐cloud interactions (RFaci: −0.219 W m−2). Regional signatures of nitrate RE/RF are noticeable and important: for instance, very small changes in REariin Europe and USA, but 2.8–3 times increases in REariin India and China from 1975 to 2010, while REaci/RFaciin China is a warming effect due to the competing effect between sulfate and nitrate aerosols as cloud condensation nuclei.

     
    more » « less
  2. Abstract

    Since 2013, Chinese policies have dramatically reduced emissions of particulates and their gas‐phase precursors, but the implications of these reductions for aerosol‐radiation interactions are unknown. Using a global, coupled chemistry‐climate model, we examine how the radiative impacts of Chinese air pollution in the winter months of 2012 and 2013 affect local meteorology and how these changes may, in turn, influence surface concentrations of PM2.5, particulate matter with diameter <2.5 μm. We then investigate how decreasing emissions through 2016 and 2017 alter this impact. We find that absorbing aerosols aloft in winter 2012 and 2013 heat the middle‐ and lower troposphere by ∼0.5–1 K, reducing cloud liquid water, snowfall, and snow cover. The subsequent decline in surface albedo appears to counteract the ∼15–20 W m−2decrease in shortwave radiation reaching the surface due to attenuation by aerosols overhead. The net result of this novel cloud‐snowfall‐albedo feedback in winters 2012–2013 is a slight increase in surface temperature of ∼0.5–1 K in some regions and little change elsewhere. The aerosol heating aloft, however, stabilizes the atmosphere and decreases the seasonal mean planetary boundary layer (PBL) height by ∼50 m. In winter 2016 and 2017, the ∼20% decrease in mean PM2.5weakens the cloud‐snowfall‐albedo feedback, though it is still evident in western China, where the feedback again warms the surface by ∼0.5–1 K. Regardless of emissions, we find that aerosol‐radiation interactions enhance mean surface PM2.5pollution by 10%–20% across much of China during all four winters examined, mainly though suppression of PBL heights.

     
    more » « less
  3. Abstract

    Marine cloud brightening (MCB) has been proposed as a potential means of geoengineering the climate, temporarily providing cooling to offset some of the effects of climate change. Marine sky brightening (MSB), involving the direct scattering of sunlight from sea salt injection into the marine boundary layer, has been proposed as an additional geoengineering method that could work in areas that are not regularly cloudy. Here, we use a regional atmospheric model to simulate MCB and MSB over the Gulf of Mexico and nearby land, a highly populated and economically important region that is not characterized by persistent marine stratocumulus cloud cover. Injection of sea salt in the Aitken mode from a region in the central Gulf of Mexico equivalent to 10.8 Tg yr−1produces an upwards 8.4 W m−2radiative flux change across the region at the top of the atmosphere, largely due to cloud property changes. Comparatively, a similar mass injection in the accumulation mode produces a 3.1 W m−2radiative flux change driven primarily by direct scattering. Injection of even larger particles produces a much smaller radiative flux change. Shortwave flux changes due to clouds are largely driven by an increase in cloud droplet number concentration and an increase in cloud liquid water path (each contributing about 45% to the flux change), with a much lower contribution from cloud fraction changes (10%).

     
    more » « less
  4. Abstract

    Using the Community Earth System Model, with the Community Atmosphere Model version 5.3, we investigate the cloud radiative effects of anthropogenic aerosols emitted from different source regions and global shipping. We also analyze aerosol burdens, cloud condensation nuclei concentration, liquid water path, and ice water path. Due to transboundary transport and sublinearity in the response of clouds to aerosols, the cloud radiative effects of emissions from a given source region are influenced by emissions from other source regions. For example, the shortwave cloud radiative effect of shipping is−0.39 ± 0.03W/m2when other anthropogenic emissions sources are present (the “present‐day background” assumption) compared with−0.60 ± 0.03W/m2when other anthropogenic emissions sources are absent (the “natural background” assumption). In general, the cloud radiative effects are weaker if present‐day background conditions are assumed compared with if natural background conditions are assumed. Assumptions about background conditions should be carefully considered when investigating the climate impacts of aerosol emissions from a given source region.

     
    more » « less
  5. Abstract

    Multiple 50‐member ensemble simulations with the Community Earth System Model version 2 are performed to estimate the coupled climate responses to the 2019–2020 Australian wildfires and COVID‐19 pandemic policies. The climate response to the pandemic is found to be weak generally, with global‐mean net top‐of‐atmosphere radiative anomalies of +0.23 ± 0.14 W m−2driving a gradual global warming of 0.05 ± 0.04 K by the end of 2022. While regional anomalies are detectable in aerosol burdens and clear‐sky radiation, few significant anomalies exist in other fields due to internal variability. In contrast, the simulated response to Australian wildfires is a strong and rapid cooling, peaking globally at0.95 ± 0.15 W m−2in late 2019 with a global cooling of 0.06 ± 0.04 K by mid‐2020. Transport of fire aerosols throughout the Southern Hemisphere increases albedo and drives a strong interhemispheric radiative contrast, with simulated responses that are consistent generally with those to a Southern Hemisphere volcanic eruption.

     
    more » « less