skip to main content


Title: Very Large Array Multiband Radio Imaging of the Triple AGN Candidate SDSS J0849+1114
Abstract

Kiloparsec-scale triple active galactic nuclei (AGNs), potential precursors of gravitationally bound triple massive black holes (MBHs), are rarely seen objects and believed to play an important role in the evolution of MBHs and their host galaxies. In this work we present a multiband (3.0, 6.0, 10.0, and 15.0 GHz), high-resolution radio imaging of the triple AGN candidate, SDSS J0849+1114, using the Very Large Array. Two of the three nuclei (A and C) are detected at 3.0, 6.0, and 15 GHz for the first time, both exhibiting a steep spectrum over 3–15 GHz (with a spectral index −0.90 ± 0.05 and −1.03 ± 0.04) consistent with a synchrotron origin. Nucleus A, the strongest nucleus among the three, shows a double-sided jet, with the jet orientation changing by ∼20° between its inner 1″ and the outer 5.″5 (8.1 kpc) components, which may be explained as the MBH’s angular momentum having been altered by merger-enhanced accretion. Nucleus C also shows a two-sided jet, with the western jet inflating into a radio lobe with an extent of 1.″5 (2.2 kpc). The internal energy of the radio lobe is estimated to be 5.0 × 1055erg, for an equipartition magnetic field strength of ∼160μG. No significant radio emission is detected at all four frequencies for nucleus B, yielding an upper limit of 15, 15, 15, and 18μJy beam−1at 3.0, 6.0, 10.0, and 15.0 GHz, based on which we constrain the star formation rate in nucleus B to be ≲0.4Myr−1.

 
more » « less
Award ID(s):
2108162
NSF-PAR ID:
10375464
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 89
Size(s):
["Article No. 89"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the analysis of ∼100 pc scale compact radio continuum sources detected in 63 local (ultra)luminous infrared galaxies (U/LIRGs;LIR≥ 1011L), using FWHM ≲ 0.″1–0.″2 resolution 15 and 33 GHz observations with the Karl G. Jansky Very Large Array. We identify a total of 133 compact radio sources with effective radii of 8–170 pc, which are classified into four main categories—“AGN” (active galactic nuclei), “AGN/SBnuc” (AGN-starburst composite nucleus), “SBnuc” (starburst nucleus), and “SF” (star-forming clumps)—based on ancillary data sets and the literature. We find that “AGN” and “AGN/SBnuc” more frequently occur in late-stage mergers and have up to 3 dex higher 33 GHz luminosities and surface densities compared with “SBnuc” and “SF,” which may be attributed to extreme nuclear starburst and/or AGN activity in the former. Star formation rates (SFRs) and surface densities (ΣSFR) are measured for “SF” and “SBnuc” using both the total 33 GHz continuum emission (SFR ∼ 0.14–13Myr−1, ΣSFR∼ 13–1600Myr−1kpc−2) and the thermal free–free emission from Hiiregions (median SFRth∼ 0.4Myr−1,ΣSFRth44Myr−1kpc−2). These values are 1–2 dex higher than those measured for similar-sized clumps in nearby normal (non-U/LIRGs). The latter also have a much flatter median 15–33 GHz spectral index (∼−0.08) compared with “SBnuc” and “SF” (∼−0.46), which may reflect higher nonthermal contribution from supernovae and/or interstellar medium densities in local U/LIRGs that directly result from and/or lead to their extreme star-forming activities on 100 pc scales.

     
    more » « less
  2. Abstract

    We report the discoveries of a nuclear ring of diameter 10″ (∼1.5 kpc) and a potential low-luminosity active galactic nucleus (LLAGN) in the radio continuum emission map of the edge-on barred spiral galaxy NGC 5792. These discoveries are based on the Continuum Halos in Nearby Galaxies—an Expanded Very Large Array (VLA) Survey, as well as subsequent VLA observations of subarcsecond resolution. Using a mixture of Hαand 24μm calibrations, we disentangle the thermal and nonthermal radio emission of the nuclear region and derive a star formation rate (SFR) of ∼0.4Myr−1. We find that the nuclear ring is dominated by nonthermal synchrotron emission. The synchrotron-based SFR is about three times the mixture-based SFR. This result indicates that the nuclear ring underwent more intense star-forming activity in the past, and now its star formation is in the low state. The subarcsecond VLA images resolve six individual knots on the nuclear ring. The equipartition magnetic field strengthBeqof the knots varies from 77 to 88μG. The radio ring surrounds a point-like faint radio core ofS6 GHz= (16 ± 4)μJy with polarized lobes at the center of NGC 5792, which suggests an LLAGN with an Eddington ratio of ∼10−5. This radio nuclear ring is reminiscent of the Central Molecular Zone of the Galaxy. Both of them consist of a nuclear ring and LLAGN.

     
    more » « less
  3. Abstract

    The Dragonfly galaxy (MRC 0152-209), the most infrared-luminous radio galaxy at redshiftz∼ 2, is a merger system containing a powerful radio source and large displacements of gas. We present kiloparsec-resolution data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array of carbon monoxide (6−5), dust, and synchrotron continuum, combined with Keck integral field spectroscopy. We find that the Dragonfly consists of two galaxies with rotating disks that are in the early phase of merging. The radio jet originates from the northern galaxy and brightens when it hits the disk of the southern galaxy. The Dragonfly galaxy therefore likely appears as a powerful radio galaxy because its flux is boosted into the regime of high-zradio galaxies by the jet–disk interaction. We also find a molecular outflow of (1100 ± 550)Myr−1associated with the radio host galaxy, but not with the radio hot spot or southern galaxy, which is the galaxy that hosts the bulk of the star formation. Gravitational effects of the merger drive a slower and longer-lived mass displacement at a rate of (170 ± 40)Myr−1, but this tidal debris contains at least as much molecular gas mass as the much faster outflow, namelyMH2= (3 ± 1) × 109(αCO/0.8)M. This suggests that both the active-galactic-nucleus-driven outflow and mass transfer due to tidal effects are important in the evolution of the Dragonfly system. The Keck data show Lyαemission spread across 100 kpc, and Civand Heiiemission across 35 kpc, confirming the presence of a metal-rich and extended circumgalactic medium previously detected in CO(1–0).

     
    more » « less
  4. Abstract

    The Time Domain Field (TDF) near the North Ecliptic Pole in JWST’s continuous-viewing zone will become a premier “blank field” for extragalactic science. JWST/NIRCam data in a 16 arcmin2portion of the TDF identify 4.4μm counterparts for 62 of 63 3 GHz sources withS(3 GHz) > 5μJy. The one unidentified radio source may be a lobe of a nearby Seyfert galaxy, or it may be an infrared-faint radio source. The bulk properties of the radio-host galaxies are consistent with those found by previous work: redshifts range from 0.14–4.4 with a median redshift of 1.33. The radio emission arises primarily from star formation in ∼2/3 of the sample and from an active galactic nucleus (AGN) in ∼1/3, but just over half the sample shows evidence for an AGN either in the spectral energy distribution or by radio excess. All but three counterparts are brighter than magnitude 23 AB at 4.4μm, and the exquisite resolution of JWST identifies correct counterparts for sources for which observations with lower angular resolution would misidentify a nearby bright source as the counterpart when the correct one is faint and red. Up to 11% of counterparts might have been unidentified or misidentified absent NIRCam observations.

     
    more » « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less