skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Very Large Array Multiband Radio Imaging of the Triple AGN Candidate SDSS J0849+1114
Abstract Kiloparsec-scale triple active galactic nuclei (AGNs), potential precursors of gravitationally bound triple massive black holes (MBHs), are rarely seen objects and believed to play an important role in the evolution of MBHs and their host galaxies. In this work we present a multiband (3.0, 6.0, 10.0, and 15.0 GHz), high-resolution radio imaging of the triple AGN candidate, SDSS J0849+1114, using the Very Large Array. Two of the three nuclei (A and C) are detected at 3.0, 6.0, and 15 GHz for the first time, both exhibiting a steep spectrum over 3–15 GHz (with a spectral index −0.90 ± 0.05 and −1.03 ± 0.04) consistent with a synchrotron origin. Nucleus A, the strongest nucleus among the three, shows a double-sided jet, with the jet orientation changing by ∼20° between its inner 1″ and the outer 5.″5 (8.1 kpc) components, which may be explained as the MBH’s angular momentum having been altered by merger-enhanced accretion. Nucleus C also shows a two-sided jet, with the western jet inflating into a radio lobe with an extent of 1.″5 (2.2 kpc). The internal energy of the radio lobe is estimated to be 5.0 × 1055erg, for an equipartition magnetic field strength of ∼160μG. No significant radio emission is detected at all four frequencies for nucleus B, yielding an upper limit of 15, 15, 15, and 18μJy beam−1at 3.0, 6.0, 10.0, and 15.0 GHz, based on which we constrain the star formation rate in nucleus B to be ≲0.4Myr−1 more » « less
Award ID(s):
2108162
PAR ID:
10375464
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 89
Size(s):
Article No. 89
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Dragonfly galaxy (MRC 0152-209), the most infrared-luminous radio galaxy at redshiftz∼ 2, is a merger system containing a powerful radio source and large displacements of gas. We present kiloparsec-resolution data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array of carbon monoxide (6−5), dust, and synchrotron continuum, combined with Keck integral field spectroscopy. We find that the Dragonfly consists of two galaxies with rotating disks that are in the early phase of merging. The radio jet originates from the northern galaxy and brightens when it hits the disk of the southern galaxy. The Dragonfly galaxy therefore likely appears as a powerful radio galaxy because its flux is boosted into the regime of high-zradio galaxies by the jet–disk interaction. We also find a molecular outflow of (1100 ± 550)Myr−1associated with the radio host galaxy, but not with the radio hot spot or southern galaxy, which is the galaxy that hosts the bulk of the star formation. Gravitational effects of the merger drive a slower and longer-lived mass displacement at a rate of (170 ± 40)Myr−1, but this tidal debris contains at least as much molecular gas mass as the much faster outflow, namelyMH2= (3 ± 1) × 109CO/0.8)M. This suggests that both the active-galactic-nucleus-driven outflow and mass transfer due to tidal effects are important in the evolution of the Dragonfly system. The Keck data show Lyαemission spread across 100 kpc, and Civand Heiiemission across 35 kpc, confirming the presence of a metal-rich and extended circumgalactic medium previously detected in CO(1–0). 
    more » « less
  2. Abstract We present multiwavelength observations of the Swift shortγ-ray burst GRB 231117A, localized to an underlying galaxy at redshiftz= 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 . ° 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade. 
    more » « less
  3. Abstract We present first results from James Webb Space Telescope Near-Infrared Spectrograph, Mid-Infrared Instrument, and Keck Cosmic Webb Imager integral field spectroscopy of the powerful but highly obscured host galaxy of the jetted radio source Cygnus A. We detect 169 infrared emission lines at 1.7–27μm and explore the kinematics and physical properties of the extended narrow-line region (NLR) in unprecedented detail. The density-stratified NLR appears to be shaped by the initial blow-out and ongoing interaction of the radio jet with the interstellar medium, creating a multiphase bicone with a layered structure composed of molecular and ionized gas. The NLR spectrum, with strong coronal emission at kiloparsec scale, is well modeled by active galactic nucleus photoionization. We find evidence that the NLR is rotating around the radio axis, perhaps mediated by magnetic fields and driven by angular momentum transfer from the radio jet. The overall velocity field of the NLR is well described by 250 km s−1outflow along biconical spiral flow lines, combining both rotation and outflow signatures. There is particularly bright [Feii]λ1.644μm emission from a dense, high-velocity dispersion, photoionized clump of clouds found near the projected radio axis. Outflows of 600–2000 km s−1are found in bullets and streamers of ionized gas that may be ablated by the radio jet from these clouds, driving a local outflow rate of 40Myr−1
    more » « less
  4. Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 . 914 ± 0 . 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M, at least 10 times lower than its host galaxy’s central black hole mass (≳108M). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass. 
    more » « less
  5. Aims.We investigated the polarization and Faraday properties of Messier 87 (M87) and seven other radio-loud active galactic nuclei (AGNs) atλ0.87 mm (345 GHz) using the Atacama Large Millimeter/submillimeter Array (ALMA). Our goal was to characterize the linear polarization (LP) fractions, measure Faraday rotation measures (RMs), and examine the magnetic field structures in the emission regions of these AGNs. Methods.We conducted full-polarization observations as part of the ALMA Band 7 very long baseline interferometry (VLBI) commissioning during the April 2021 Event Horizon Telescope (EHT) campaign. We analyzed the LP fractions and RMs to assess the nature of Faraday screens and magnetic fields in the submillimeter emission regions. Results.We find LP fractions between 1% and 17% and RMs exceeding 105 rad m−2, which are 1–2 orders of magnitude higher than typically observed at longer wavelengths (λ>3 mm). This suggests denser Faraday screens or stronger magnetic fields. Additionally, we present the first submillimeter polarized images of the M87 jet and the observed AGNs, revealing RM gradients and sign reversals in the M87 jet indicative of a kiloparsec-scale helical magnetic field structure. Conclusions.Our results provide essential constraints for calibrating, analyzing, and interpreting VLBI data from the EHT at 345 GHz, representing a critical step toward submillimeter VLBI imaging. 
    more » « less