skip to main content


Title: Projected Seismic Activity at the Tiger Stripe Fractures on Enceladus, Saturn, From an Analog Study of Tidally Modulated Icequakes Within the Ross Ice Shelf, Antarctica
Abstract

Dissipation of tidal energy is expected to generate seismicity on icy‐ocean worlds; however, the distribution and timing of this seismic activity throughout an orbital cycle is not known. We used new observations from an icy‐ocean‐world analog environment on Earth to examine the relationship between tidally driven tensile stress and seismic activity within an ice shell. We investigated a pair of rifts within Antarctica's Ross Ice Shelf which are tidally stressed in a manner analogous to the orbital cycle of tidal stress experienced by Enceladus' Tiger Stripe Fractures. We found that seismic activity at the Antarctic rifts is sensitive to both the amplitude and the rate of tensile stress across the rifts. We combined these findings with calculated stress values along Enceladus' Tiger Stripe Fractures to predict seismic‐activity levels expected along the ice‐shell fractures. We predict a peak in seismicity along the four Tiger Stripe Fractures when Enceladus is 90°–120° past pericenter in its orbit around Saturn, at which point tensile stresses would reach ∼2/3 of their maximum value. We also used the magnitude distribution of icequakes along Antarctic rifts to investigate implications for the likely size of stick‐slip rupture patches along icy faults on Enceladus. Our findings predict that the Tiger Stripe Fractures should produce sustained, low‐magnitude seismic events that involve rupture along discrete portions of each fracture's total length. We predict that seismicity would fall to 50% of peak levels when stresses across the Tiger Stripe Fractures are dominantly compressional.

 
more » « less
NSF-PAR ID:
10375489
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
126
Issue:
6
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter.

     
    more » « less
  2. null (Ed.)
    Abstract Recent studies have shown that the Antarctic cryosphere is sensitive to external disturbances such as tidal stresses or dynamic stresses from remote large earthquakes. In this study, we systematically examine evidence of remotely triggered microseismicity around Mount (Mt.) Erebus, an active high elevation stratovolcano located on Ross Island, Antarctica. We detect microearthquakes recorded by multiple stations from the Mt. Erebus Volcano Observatory Seismic Network one day before and after 43 large teleseismic earthquakes, and find that seven large earthquakes (including the 2010 Mw 8.8 Maule, Chile, and 2012 Mw 8.6 Indian Ocean events) triggered local seismicity on the volcano, with most triggered events occurring during the passage of the shorter-period Rayleigh waves. In addition, their waveforms and locations for the triggered events are different when comparing with seismic events arising from the persistent small-scale eruptions, but similar to other detected events before and after the mainshocks. Based on the waveform characteristics and their locations, we infer that these triggered events are likely shallow icequakes triggered by dilatational stress perturbations from teleseismic surface waves. We show that teleseismic earthquakes with higher peak dynamic stress changes are more capable of triggering icequakes at Mt. Erebus. We also find that the icequakes in this study are more likely to be triggered during the austral summer months. Our study motivates the continued monitoring of Mount Erebus with dense seismic instrumentation to better understand interactions between dynamic seismic triggering, crospheric processes, and volcanic activity. 
    more » « less
  3. All exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.

     
    more » « less
  4. Abstract

    Understanding the stress state before and after an earthquake is essential to study how stress on faults evolves during the seismic cycle. This study integrates wellbore failure analysis, laboratory experiments, and edge dislocation model to study the stress state before and after the Chi‐Chi earthquake. The post‐earthquake in‐situ stress state observed along boreholes of the Taiwan Chelungpu‐fault Drilling Project (TCDP) is heterogeneous due to lithological variations. Along the borehole, we observe that drilling‐induced tensile fractures are only present in sandstones, whereas breakouts are mostly present in silt‐rich rocks. Laboratory experiments on TCDP cores also show that tensile and compressive strength are weaker in sandstones than in silt‐rich rocks. These observations imply that both maximum and minimum horizontal principal stresses are higher in silt‐rich intervals. Extended leak‐off tests in the TCDP borehole also show lower minimum horizontal stress in sand‐rich intervals, consistent with the above observations. We combine these observations to estimate a profile of stress magnitudes along the well which explains the variability of stress states found in previous studies. The stress heterogeneity we observed underlines the importance of acknowledging the spatial scale that the stress data represent. We then use an edge dislocation model constrained by GPS surface displacements obtained during Chi‐Chi earthquake to calculate the coseismic stress changes. Our inferred pre‐earthquake stress magnitudes, obtained by subtracting the coseismic stress change from the post‐earthquake stress, suggest subcritical stress state before the earthquake despite the large displacements observed during the Chi‐Chi earthquake in the region where TCDP encountered the fault.

     
    more » « less
  5. Abstract

    Pore pressure in aquifers confined below a cryosphere will increase as Mars cools and the cryosphere thickens. Increased pore pressure decreases the effective stress and hence promotes seismicity. We calculate the rate of pore pressure change from cooling of Mars's interior and the modulation of pore pressure from solar and Phobos tides and barometric loading. Using the time‐varying pressure and tidal stresses, we compute Coulomb stress changes and the expected seismicity rate from a rate‐and‐state friction model. Seismicity rate will vary by several tens of percent to 2 orders of magnitude if the mean pore pressure is within 0.2 and 0.01 MPa of lithostatic, respectively. Seismic events promoted by high pore pressure may be tremor‐like. Documenting (or not) tidally modulated shallow seismicity would provide evidence for (or against) water‐filled confined aquifers, that pore pressure is high, and that the state of stress is close to failure—with implications for processes that can deliver water to the Martian surface.

     
    more » « less