In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence and the overall contribution of tidally driven mixing to Arctic Ocean state are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10–50 m and intense dissipation associated with cross‐isobath diurnal tidal currents of
Multisatellite altimetry and an eddy‐resolving model with tides are used to quantify the attenuation of the mode‐1 M2 internal tide as it propagates from three major sources in the North Pacific. The model is used to correct the altimetric fluxes for the nonstationary signal that altimeters cannot detect. Because internal tides in the North Pacific are highly stationary, these corrections do not materially impact the decay rate estimates. Fluxes are integrated in wedges extending from the sources to account for interference and radial spreading. Observed attenuation rates are consistent with
- NSF-PAR ID:
- 10375507
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 14
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 8205-8213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ∼ 0.15 m s−1 . Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow and was released around slack water. During a 6‐hr turbulent event, high‐frequency internal waves were present, the full 300‐m depth water column became turbulent, dissipation rates increased by a factor of 100, and turbulent heat flux averaged 15 W m−2 compared with the background rate of 1 W m−2 . -
Abstract Vertical mixing is often regarded as the Achilles' heel of ocean models. In particular, few models include a comprehensive and energy‐constrained parameterization of mixing by internal ocean tides. Here, we present an energy‐conserving mixing scheme which accounts for the local breaking of high‐mode internal tides and the distant dissipation of low‐mode internal tides. The scheme relies on four static two‐dimensional maps of internal tide dissipation, constructed using mode‐by‐mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three‐dimensional map of dissipation which compares well with available microstructure observations and with upper‐ocean finestructure mixing estimates. This relative agreement, both in magnitude and spatial structure across ocean basins, suggests that internal tides underpin most of observed dissipation in the ocean interior at the global scale. The proposed parameterization is therefore expected to improve understanding, mapping, and modeling of ocean mixing.
-
Abstract Deposition of aerosols to the surface ocean is an important factor affecting primary production in the surface ocean. However, the sources and fluxes of aerosols and associated trace elements remain poorly defined. Aerosol210Pb,210Po, and7Be data were collected on US GEOTRACES cruise GP15 (Pacific Meridional Transect, 152°W; 2018).210Pb fluxes are low close to the Alaskan margin, increase to a maximum at ∼43°N, then decrease to lower values. There is good agreement between210Pb fluxes and long‐term land‐based fluxes during the SEAREX program (1970–1980s), as well as between GP15 and GP16 (East Pacific Zonal Transect, 12°S; 2013) at adjacent stations. A normalized fraction
f (7Be,210Pb) is used to discern aerosols with upper (highf ) versus lower (lowf ) troposphere sources. Alaskan/North Pacific aerosols show significant continental influence while equatorial/South Pacific aerosols are supplied to the marine boundary layer from the upper troposphere. Lithogenic trace elements Al and Ti show inverse correlations withf (7Be,210Pb), supporting a continental boundary layer provenance while anthropogenic Pb shows no clear relationship withf (7Be,210Pb). All but four samples have210Po/210Pb activity ratios <0.2 suggesting short aerosol residence time. Among the four samples (210Po/210Pb = 0.42–0.88), two suggest an upper troposphere source and longer aerosol residence time while the remaining two cannot be explained by long aerosol residence time nor a significant component of dust. We hypothesize that enrichments of210Po in them are linked to Po enrichments in the sea surface microlayer, possibly through Po speciation as a dissolved organic or dimethyl polonide species. -
Abstract Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of
m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy ( ε ) was elevated along the interleaving surfaces, with values up to 3 × 10−8W kg−1compared to backgroundε of less than 10−9W kg−1. Based on the distribution ofε as a function of density ratioRρ , we conclude that double-diffusive convection is largely responsible for the elevatedε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years. -
Abstract The potential influences of turbulence on planktonic processes such as nutrient uptake, grazing, predation, infection, and mating have been explored in hundreds of laboratory and theoretical studies. However, the turbulence levels used may not represent those experienced by oceanic plankton, bringing into question their relevance for understanding planktonic dynamics in the ocean. Here, we take a data‐centric approach to understand the turbulence climate experienced by plankton in the ocean, analyzing over one million turbulence measurements acquired in the open ocean. Median dissipation rates in the upper 100 m were < 10−8 W kg−1, with 99% of the observations < 10−6 W kg−1. Below mixed layers, the median dissipation rate was ~ 10−10 W kg−1, with 99% of the observations < 10−7 W kg−1. Even in strongly mixing layers the median dissipation rates rarely reached 10−5 W kg−1, decreasing by orders of magnitude over 10 m or less in depth. Furthermore, episodes of intense turbulence were transient, transitioning to background levels within 10 min or less. We define three turbulence conditions in the ocean: weak (< 10−8 W kg−1), moderate (10−8–10−6 W kg−1), and strong (> 10−6 W kg−1). Even the strongest of these is much weaker than those used in most laboratory experiments. The most frequent turbulence levels found in this study are weak enough for most plankton—including small protists—to outswim them, and to allow chemical plumes and trails to persist for tens of minutes. Our analyses underscore the primary importance of planktonic behavior in driving individual interactions.