We perform a 2.5-dimensional particle-in-cell simulation of a quasi-parallel shock, using parameters for the Earth’s bow shock, to examine electron acceleration and heating due to magnetic reconnection. The shock transition region evolves from the ion-coupled reconnection dominant stage to the electron-only reconnection dominant stage, as time elapses. The electron temperature enhances locally in each reconnection site, and ion-scale magnetic islands generated by ion-coupled reconnection show the most significant enhancement of the electron temperature. The electron energy spectrum shows a power law, with a power-law index around 6. We perform electron trajectory tracing to understand how they are energized. Some electrons interact with multiple electron-only reconnection sties, and Fermi acceleration occurs during multiple reflections. Electrons trapped in ion-scale magnetic islands can be accelerated in another mechanism. Islands move in the shock transition region, and electrons can obtain larger energy from the in-plane electric field than the electric potential in those islands. These newly found energization mechanisms in magnetic islands in the shock can accelerate electrons to energies larger than the achievable energies by the conventional energization due to the parallel electric field and shock drift acceleration. This study based on the selected particle analysis indicates that the maximum energy in the nonthermal electrons is achieved through acceleration in ion-scale islands, and electron-only reconnection accounts for no more than half of the maximum energy, as the lifetime of sub-ion-scale islands produced by electron-only reconnection is several times shorter than that of ion-scale islands.
Magnetic reconnection in a quasi‐parallel bow shock is investigated with two‐dimensional local particle‐in‐cell simulations. In the shock transition and downstream regions, large amplitude magnetic fluctuations exist, and abundant current sheets form. In some current sheets, reconnection occurs, and ion‐scale and electron‐scale magnetic islands are generated. In electron‐scale island regions, only electron outflow jets are observed, producing a quadrupolar out‐of‐plane magnetic field pattern, while in ion‐scale islands, both ions and electrons are involved and energized in reconnection. Normalized reconnection rates are obtained to be between around 0.1 to 0.2, and particle acceleration signatures are seen in distribution functions.
more » « less- PAR ID:
- 10375555
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 16
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 9352-9361
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We report evidence of magnetic reconnection in the transition region of the Earth's bow shock when the angle between the shock normal and the immediate upstream magnetic field is 65°. An ion‐skin‐depth‐scale current sheet exhibits the Hall current and field pattern, electron outflow jet, and enhanced energy conversion rate through the nonideal electric field, all consistent with a reconnection diffusion region close to the X‐line. In the diffusion region, electrons are modulated by electromagnetic waves. An ion exhaust with energized field‐aligned ions and electron parallel heating are observed in the same shock transition region. The energized ions are more separated from the inflowing ions in velocity above the current sheet than below, possibly due to the shear flow between the two inflow regions. The observation suggests that magnetic reconnection may contribute to shock energy dissipation.
-
Abstract Magnetic reconnection is a fundamental process of energy conversion in plasmas between electromagnetic fields and particles. Magnetic reconnection has been observed directly in a variety of plasmas in the solar wind and Earth's magnetosphere. Most recently, electron magnetic reconnection without ion coupling was observed for the first time in the turbulent magnetosheath and within the transition region of Earth's bow shock. In the ion foreshock upstream of Earth's bow shock, there may also be magnetic reconnection especially around foreshock transients that are very turbulent and dynamic. With observations from the National Aeronautics and Space Administration's Magnetospheric Multiscale mission inside foreshock transients, we report two events of magnetic reconnection with and without a strong guide field, respectively. In both events, a super‐ion‐Alfvénic electron jet was observed within a current sheet with thickness less than or comparable to one ion inertial length. In both events, energy was converted from the magnetic field to electrons, manifested as an increase in electron temperature. Weak or no ion coupling was observed in either event. Results from particle‐in‐cell simulations of magnetic reconnection with and without a strong guide field are qualitatively consistent with observations. Our results imply that magnetic reconnection is another electron acceleration/heating process inside foreshock transients and could play an important role in shock dynamics.
-
Observations in Earth’s turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.more » « less
-
Abstract Numerous structures conducive to magnetic reconnection are frequently observed in the turbulent regions at quasi-parallel shocks. In this work, we use a particle-in-cell simulation to study 3D magnetic reconnection in shock turbulence. We identify and characterize magnetic null points, and focus on reconnection along the separator between them. We identify a reconnection region with strong parallel current, a finite parallel potential, and counterrotating electron flows. Electrons are shown to be accelerated by the parallel electric field before being scattered at the null.