skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: The success of a habitat specialist biological control agent in the face of disturbance

Natural enemies that can use multiple habitats are thought to better withstand disturbances in agricultural systems than natural enemies that are habitat specialists. This is because habitat generalists have populations in multiple habitats that can serve as sources of immigrants into an agricultural crop following a disturbance. In contrast, the dynamics of habitat specialists are tightly coupled with those of one agricultural crop. Nonetheless, some habitat specialists are successful in highly disturbed environments. To test how the magnitude of within‐field disturbance affects biological control agents, we conducted a large‐scale field manipulation in alfalfa fields and monitored the response of pea aphids, habitat‐generalist predators, a habitat‐specialist parasitoid (Aphidius ervi), and hyperparasitoids ofA. ervi. The manipulation involved three treatments: harvesting normally (intermediate disturbance); spraying insecticide immediately after harvesting (high disturbance); and harvesting in strips (low disturbance). As a group, the habitat‐generalist predator species showed a range of responses to disturbances, from no response to decreases in abundance in the high‐disturbance treatment, indicating differences in their response to the density of pea aphids following disturbances. Surprisingly, percentage parasitism by the habitat‐specialist parasitoid was little affected by experimental disturbance manipulations. Furthermore, two of the four hyperparasitoids ofA. erviwere negatively affected by the magnitude of disturbance, suggesting that disturbance could have an indirect positive effect onA. ervi. These results suggest that a habitat specialist can overcome the detrimental effects of disturbances without using alternative habitats. In addition, disturbance can sometimes benefit biological control agents by disproportionally negatively affecting their enemies from the fourth trophic level.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Non‐crop habitats are essential for sustaining biodiversity of beneficial arthropods in agricultural landscapes, which can increase ecosystem services provision and crop yield. However, their effects on specific crop systems are less clear, such as soybean in South America, where the responses of pests and natural enemies to landscape structure have only recently been studied.

    Here, we analysed how native forest fragments at local and landscape scales influenced arthropod communities, herbivory and yield in soybean fields in central Argentina. To do this, we selected soybean fields located in agricultural landscapes with varying proportions of forest cover. At two distances (10 and 100 m) from a focal forest fragment, we sampled natural enemy and herbivore arthropods, and measured soybean herbivory and yield. We focused on herbivore diversity, abundance of key soybean pests in the region (caterpillars and stink bugs), and their generalist and specialist natural enemies.

    Higher abundance of predators, lower herbivory rates and increased yield were found near forests, while overall forest cover in the landscape was positively related with parasitoid and stink bug abundance, soybean yield, and negatively with herbivory. Moreover, yield was positively linked to richness and abundance of generalist and specialist enemies and independent of herbivory according to piecewise Structural Equation Models.

    Synthesis and applications. Our results show positive effects of native forests on biodiversity and yield in soybean crops, highlighting the need for conservation of forest fragments in agricultural landscapes. Moreover, the relation between natural enemies and crop yield suggests that Chaco forests support a diverse and abundant community of natural enemies that can provide sustained levels of ecosystem services and result in positive effects for farmers.

    more » « less
  2. Abstract

    Domesticated plants can differ from their wild counterparts in the strength and outcome of species interactions, both above‐ and belowground. Plant–soil feedbacks influence plant success, and plant‐associated soil microbial communities can influence plant interactions with herbivores and their natural enemies, yet, it remains unclear if domestication has changed these relationships.

    To determine the effects of domestication on plant–soil interactions, we characterized soil microbial communities associated with various cultivars of domesticated tomato and some of its wild relatives. We measured the strength and direction of plant–soil feedbacks for domesticated and wild tomatoes, and the effects of soil on plant resistance to specialist herbivory byManduca sexta, and the attraction of a parasitoid wasp,Cotesia congregata.

    Domesticated tomatoes and their wild relatives had negative plant–soil feedbacks, as conspecifics cultivated soil that negatively impacted performance of subsequent plants (longer germination time, lower biomass) than if they grew in non‐tomato soils. Significant variation existed among domesticated and wild tomato varieties in the strength of these feedbacks, ranging from neutral to strongly negative. For above‐ground plant biomass, tomato wild relatives were unaffected by growing in tomato‐conditioned soil, whereas domesticated tomatoes grew smaller in tomato soil, indicating effects of plant domestication. Overall, increased microbial biomass within the rhizosphere resulted in progressively less‐negative plant–soil feedbacks.

    Plant cultivars had different levels of resistance to herbivory byM. sexta, but this did not depend on plant domestication or soil type. The parasitoidC. congregatawas primarily attracted to herbivore damaged plants, independent of plant domestication status, and for these damaged plants, wasps preferred some cultivars over others, and wild plants grown in tomato soil over wild plants grown in non‐tomato soil.

    Synthesis.These results indicate that crop tomatoes are more likely to show negative plant–soil feedbacks than wild progenitors, which could partially explain their sensitivity to monocultures in agricultural soils. Furthermore, cultivar‐specific variation in the ability to generate soil microbial biomass, independent of domestication status, appears to buffer the negative consequences of sharing the same soil. Last, soil legacies were relatively absent for herbivores, but not for parasitoid wasps, suggesting trophic level specificity in soil feedbacks on plant–insect interactions.

    more » « less
  3. Abstract

    Ecologically relevant symbioses are widespread in terrestrial arthropods but based on recent findings these specialized interactions are likely to be especially vulnerable to climate warming. Importantly, empirical data and climate models indicate that warming is occurring asynchronously, with night‐time temperatures increasing faster than daytime temperatures. Daytime (DTW) and night‐time warming (NTW) may impact ectothermic animals and their interactions differently as DTW results in greater daily temperature variation and moves organisms nearer to their thermal limits, while NTW avoids thermal limits and may relieve constraints of cooler night‐time temperatures; a nuance that has largely been ignored in the literature.

    In laboratory experiments, we investigated how the timing of warming influences a widespread defensive mutualism involving the pea aphidAcyrthosiphon pisum, and its heritable symbiont,Hamiltonella defensa, which protects against an important natural enemy, the parasitic waspAphidius ervi.

    Three aphid sublines were experimentally created from single aphid genotype susceptible toA. ervi: one line infected with a highly protectiveH. defensastrain, one infected with a moderately protective strain and one without any facultative symbiont. We examined aphid fitness in the presence and absence of parasitoids and when exposed to an average 2.5°C increase occurring across three warming scenarios (night‐time vs. daytime vs. uniform) relative to no‐warming controls.

    An increase of 2.5°C, as predicted to occur by the IPCC before 2100, was sufficient to disable the aphid defensive mutualism regardless of the timing of warming; a surprising result given that the daily maxima for control and NTW scenarios were identical. We also found that warming negatively impacted (a) symbiont‐mediated interactions between host and parasitoid more than symbiont‐free ones; (b) species interactions (host–parasitoid) more than each participant independently and (c) aphids more than parasitoids even though higher trophic levels are generally predicted to be more affected by warming.

    Here we show that 2.5°C warming, regardless of timing, negatively impacted a common microbe‐mediated defensive mutualism. While this was a laboratory‐based study, results suggest that temperature increases predicted in the near‐term may disrupt the many ecological symbioses present in terrestrial ecosystems.

    more » « less
  4. Abstract

    Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiontHamiltonella defensaconfers protection against the parasitoid,Aphidius ervi, andRegiella insecticolaprotects against aphid‐specific fungal pathogens, includingPandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virusApisum virus(APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont‐free aphids and these costs were elevated in aphids also housingHdefensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids withRinsecticola. To our knowledge,Rinsecticolais the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of eitherRinsecticolaorHdefensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont‐mediated interactions.

    more » « less
  5. ABSTRACT Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum , host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola , across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa , but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola . Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa -imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status. IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella , produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with “Swiss army knife” defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present. 
    more » « less