skip to main content


Title: Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space‐Based Formaldehyde Measurements
Abstract

India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high‐resolution nested chemical transport model (GEOS‐Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME‐2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30–60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent‐wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base‐case inversions (full uncertainty range: 44–65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13–16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent‐wide (within 2%) and regionally. An exception is the Indo‐Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37–50% of the annual regional VOC source in our base‐case inversions and exceed biogenic emissions over the Indo‐Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post‐monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent.

 
more » « less
NSF-PAR ID:
10375640
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
19
ISSN:
2169-897X
Page Range / eLocation ID:
p. 10525-10545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Indian Summer Monsoon [ISM] provides approximately 80% of South Asia’s annual average precipitation. Nepal represents a particularly important sector of the ISM because of its location at the base of the Himalayas, Asia’s water tower, and in the zone of influence of the mid-latitude westerlies. Late Holocene ISM variability has previously been examined using high resolution resolved stable isotope records of stalagmites from northern, northeastern, and central India, but as of yet, no such records have been published from Nepal. We present high resolution stable isotopic time series from two precisely-dated and partially overlapping stalagmites spanning the last 2400 years from Siddha Baba Cave, central Nepal, as well as a year of isotopic data from rainwater collected near the cave. It has been suggested that the amount effect has only a minor effect on the oxygen isotope variability in precipitation in this area. As a result, we couple oxygen and carbon isotopes from these stalagmites to examine both regional and local-scale ISM dynamics. The Siddha Baba record reveals two periods suggestive of changes in the ISM: an apparent increase in rainfall during approximately CE 1350-1550 and a reduction in rainfall characterizing the last two centuries. We investigate these intervals using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. A primary focus is on links between Indo-Pacific ocean-atmosphere interactions and subsequent changes in the monsoon circulation over the Indian subcontinent, as well as regional moisture transport into Nepal between these periods. 
    more » « less
  2. The Indian Summer Monsoon [ISM] provides approximately 80% of South Asia’s annual average precipitation. Nepal represents a particularly important sector of the ISM because of its location at the base of the Himalayas, Asia’s water tower, and in the zone of influence of the mid-latitude westerlies. Late Holocene ISM variability has previously been examined using high resolution resolved stable isotope records of stalagmites from northern, northeastern, and central India, but as of yet, no such records have been published from Nepal. We present high resolution stable isotopic time series from two precisely-dated and partially overlapping stalagmites spanning the last 2400 years from Siddha Baba Cave, central Nepal, as well as a year of isotopic data from rainwater collected near the cave. It has been suggested that the amount effect has only a minor effect on the oxygen isotope variability in precipitation in this area. As a result, we couple oxygen and carbon isotopes from these stalagmites to examine both regional and local-scale ISM dynamics. The Siddha Baba record reveals two periods suggestive of changes in the ISM: an apparent increase in rainfall during approximately CE 1350-1550 and a reduction in rainfall characterizing the last two centuries. We investigate these intervals using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. A primary focus is on links between Indo-Pacific ocean-atmosphere interactions and subsequent changes in the monsoon circulation over the Indian subcontinent, as well as regional moisture transport into Nepal between these periods. 
    more » « less
  3. Abstract

    Freshly emitted soot is hydrophobic, but condensation of secondary aerosols and coagulation with other particles modify its hygroscopic optical properties. This conversion is referred to as “aerosol aging.” Many climate models represent this aging process with a fixed aging time scale, whereas in reality, it is a dynamic process that depends on environmental conditions. Here, we implement a dynamic aging parameterization scheme in the regional climate model RegCM4 in place of the fixed aging timescale of 1.15 days (∼27.6 h) and examine its impact on the aerosol life cycle over the Indian subcontinent. The conversion from hydrophobic to hydrophilic aerosol is usually lower than 27.6 h over the entire landmass and lower than 10 h over the polluted Indo‐Gangetic Basin (IGB), with seasonal variability. Due to the implementation of the dynamic aging scheme, the column burden and surface mass concentration of carbonaceous aerosols increase during the drier season (December–February) when washout is negligible. The burden is reduced during the wet season (June–September) due to a more efficient washout except over the IGB, where a reduction in precipitation as a result of radiative feedbacks increases the aerosol concentrations. Over the polluted IGB, surface dimming increases due to the dynamic aging scheme, with the top of the atmosphere forcing remaining mostly unchanged. As a result, atmospheric heating increases by at least 1.2 W/m2. Our results suggest that climate models should incorporate dynamic aging for a more realistic representation of aerosol simulations, especially in highly polluted regions.

     
    more » « less
  4. Abstract

    Glyoxal is a volatile organic compound (VOC) in the atmosphere that is a precursor to ozone and secondary organic aerosol, can be a measure of photochemical activity, and is one of a small number of VOCs observable from space. However, the global budget of glyoxal is not well understood, and there has been limited exploration of whether current chemical transport models reproduce satellite observations of this VOC. In this work we take advantage of recent advances in the retrieval of glyoxal from the Ozone Monitoring Instrument along with retrieved formaldehyde and the GEOS‐Chem model to constrain global glyoxal sources. Model glyoxal is produced by direct emissions from fires (6.5 Tg/year) and secondary chemical production (32.9 Tg/year) from biogenic and anthropogenic precursors. The model reproduces the annual average terrestrial spatial variability in formaldehyde and glyoxal reasonably well, with anR2of 0.8 and 0.5, respectively. We find that the model representation of biomass burning, C2H2, glyocolaldehyde, and isoprene‐dominated glyoxal production is consistent with the observations of glyoxal and formaldehyde, and the ratio of glyoxal to formaldehyde to within ~20%. However, the observations suggest that glyoxal production from the high monoterpene‐emitting boreal regions is underestimated in the model, with concentrations low by more than a factor of 3. This suggests that the oxidative chemistry of monoterpenes is not well represented in the GEOS‐Chem model and that more laboratory work is needed to constrain the impact of monoterpene emissions on atmospheric composition.

     
    more » « less
  5. Abstract. The continued warming of the Arctic could release vast stores of carbon into the atmosphere from high-latitude ecosystems, especially from thawingpermafrost. Increasing uptake of carbon dioxide (CO2) by vegetation during longer growing seasons may partially offset such release of carbon. However, evidence of significant net annual release of carbon from site-level observations and model simulations across tundra ecosystems has been inconclusive. To address this knowledge gap, we combined top-down observations of atmospheric CO2 concentration enhancements from aircraft and a tall tower, which integrate ecosystem exchange over large regions, with bottom-up observed CO2 fluxes from tundraenvironments and found that the Alaska North Slope is not a consistent net source nor net sink of CO2 to the atmosphere (ranging from −6 to+6 Tg C yr−1 for 2012–2017). Our analysis suggests that significant biogenic CO2 fluxes from unfrozen terrestrial soils, and likely inland waters, during the early cold season (September–December) are major factors in determining the net annual carbon balance of the North Slope, implying strong sensitivity to the rapidly warming freeze-up period. At the regional level, we find no evidence of the previously reported large late-cold-season (January–April) CO2 emissions to the atmosphere during the study period. Despite the importance of the cold-season CO2 emissions to the annual total, the interannual variability in the net CO2 flux is driven by the variability in growing season fluxes. During the growing season, the regional net CO2 flux is also highly sensitive to the distribution of tundra vegetation types throughout the North Slope. This study shows that quantification and characterization of year-round CO2 fluxes from the heterogeneous terrestrial and aquatic ecosystems in the Arctic using both site-level and atmospheric observations are important to accurately project the Earth system response to future warming. 
    more » « less