We investigate the relationship between dust attenuation and stellar mass (
Far-ultraviolet (FUV; ∼1200–2000 Å) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of the James Webb Space Telescope will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before; however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the Cosmic Origins Spectrograph Legacy Spectroscopic Survey (CLASSY) treasury and its first high-level science product, the CLASSY atlas. CLASSY builds on the Hubble Space Telescope (HST) archive to construct the first high-quality (S/N1500 Å≳ 5/resel), high-resolution (
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10375650
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 261
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 31
- ISSN:
- 0067-0049
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M *) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz ∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz ∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hα and Hβ emission lines, and photometric measurements of the rest-UV stellar continuum. The Hα /Hβ ratio is used to determine the magnitude of attenuation at the wavelength of Hα ,A Hα . Rest-UV colors and spectral energy distribution fitting are used to estimateA 1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM *over the redshift rangez ∼ 0 toz ∼ 2.3. Folding in the latest estimates of the evolution ofM dust, (M dust/M gas), and gas surface density at fixedM *, we find that the expectedM dustand dust mass surface density are both significantly higher atz ∼ 2.3 than atz ∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancymore » -
Abstract We use ALMA observations of CO(2–1) in 13 massive (
M *≳ 1011M ⊙) poststarburst galaxies atz ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu momentum, and Evolution ( ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withM ⊙. Given their high stellar masses, this mass limit corresponds to an average gas fraction of or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theD n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore » -
Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies.more »
-
Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Ly
α absorbers (DLAs) atz ≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz = 2.4604 using NOEMA, associated with thez = 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of % and %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi –selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M ⊙. This indicates that the highest-metallicity DLAs atz ≈ 2 are associated with the most massive galaxies. The newly identifiedz ≈ 2.4604 Hi –selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (α CO/4.36) × (r 31/0.55)M ⊙. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σ upper limit of 2.3M ⊙yr−1on the unobscuredmore » -
Abstract Using spatially resolved H
α emission line maps of star-forming galaxies, we study the spatial distribution of star formation over a wide range in redshift (0.5 ≲z ≲ 1.7). Ourz ∼ 0.5 measurements come from deep Hubble Space Telescope (HST) Wide Field Camera 3 G102 grism spectroscopy obtained as part of the CANDELS Lyα Emission at Reionization Experiment. For star-forming galaxies with log(M */M ⊙) ≥ 8.96, the mean Hα effective radius is 1.2 ± 0.1 times larger than that of the stellar continuum, implying inside-out growth via star formation. This measurement agrees within 1σ with those measured atz ∼ 1 andz ∼ 1.7 from the 3D-HST and KMOS3Dsurveys, respectively, implying no redshift evolution. However, we observe redshift evolution in the stellar mass surface density within 1 kpc (Σ1kpc). Star-forming galaxies atz ∼ 0.5 with a stellar mass of log(M */M ⊙) = 9.5 have a ratio of Σ1kpcin Hα relative to their stellar continuum that is lower by (19 ± 2)% compared toz ∼ 1 galaxies. Σ1kpc,Hα /Σ1kpc,Contdecreases toward higher stellar masses. The majority of the redshift evolution in Σ1kpc,Hα /Σ1kpc,Contversus stellar mass stems from the fact that log(Σ1kpc,Hα ) declines twice as much as log(Σ1kpc,Cont) fromz ∼ 1 to 0.5 (at a fixed stellar mass of log(M */M ⊙) = 9.5). By comparing our results to the TNG50 cosmologicalmore »