skip to main content


Title: Jamming Skins that Control System Rigidity from the Surface
Abstract

Numerous animals adapt their stiffness during natural motions to increase efficiency or environmental adaptability. For example, octopuses stiffen their tentacles to increase efficiency during reaching, and several species adjust their leg stiffness to maintain stability when running across varied terrain. Inspired by nature, variable‐stiffness machines can switch between rigid and soft states. However, existing variable‐stiffness systems are usually purpose‐built for a particular application and lack universal adaptability. Here, reconfigurable stiffness‐changing skins that can stretch and fold to create 3D structures or attach to the surface of objects to influence their rigidity are presented. These “jamming skins” employ vacuum‐powered jamming of interleaved, discrete planar elements, enabling 2D stretchability of the skin in its soft state. Stretching allows jamming skins to be reversibly shaped into load‐bearing, functional tools on‐demand. Additionally, they can be attached to host structures with complex curvatures, such as robot arms and portions of the human body, to provide support or create a mold. We also show how multiple skins can work together to modify the workspace of a continuum robot by creating instantaneous joints. Jamming skins thus serve as a reconfigurable approach to creating tools and adapting structural rigidity on‐demand.

 
more » « less
Award ID(s):
1830870
NSF-PAR ID:
10375693
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
1
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies on dynamic legged locomotion have focused on incorporating passive compliant elements into robot legs which can help with energy efficiency and stability, enabling them to work in wide range of environments. In this work, we present the design and testing of a soft robotic foot capable of active stiffness control using granular jamming. This foot is designed and tested to be used on soft, flowable ground such as sand. Granular jamming feet enable passive foot shape change when in contact with the ground for adaptability to uneven surfaces, and can also actively change stiffness for the ability to apply sufficient propulsion forces. We seek to study the role of shape change and stiffness change in foot-ground interactions during foot-fall impact and shear. We have measured the acceleration during impact, surface traction force, and the force to pull the foot out of the medium for different states of the foot. We have demonstrated that the control of foot stiffness and shape using the proposed foot design leads to improved locomotion, specifically an approximately 52% reduced foot deceleration at the joints after impact, an approximately 63% reduced depth of penetration in the sand on impact, higher shear force capabilities for a constant depth above the ground, and an approximately 98% reduced pullout force compared to a rigid foot. 
    more » « less
  2. Materials capable of dramatically changing their stiffness along specific directions in response to an external stimulus can enable the design of novel robots that can quickly switch between soft/highly–deformable and rigid/load–bearing states. While the jamming transition in discrete media has recently been demonstrated to be a powerful mechanism to achieve such variable stiffness, the lack of numerical tools capable of predicting the mechanical response of jammed media subjected to arbitrary loading conditions has limited the advancement of jamming-based robots. To overcome this limitation, we introduce a 3D finite–element-based numerical tool that predicts the mechanical response of pressurized, infinitely–extending discrete media subjected to arbitrary loading conditions. We demonstrate the capabilities of our numerical tool by investigating the response of periodic laminar and fibrous media subjected to various types of loadings. We expect this work to foster further numerical studies on jamming–based soft robots and structures by facilitating their design, as well as providing a foundation for combining various types of jamming media to create a new generation of tunable composites. 
    more » « less
  3. Abstract In this paper, we present a novel compliant robotic gripper with three variable stiffness fingers. While the shape morphing of the fingers is cable-driven, the stiffness variation is enabled by layer jamming. The inherent flexibility makes compliant gripper suitable for tasks such as grasping soft and irregular objects. However, their relatively low load capacity due to intrinsic compliance limits their applications. Variable stiffness robotic grippers have the potential to address this challenge as their stiffness can be tuned on demand of tasks. In our design, the compliant backbone of finger is made of 3D-printed PLA materials sandwiched between thin film materials. The workflow of the robotic gripper follows two basic steps. First, the compliant skeleton is driven by a servo motor via a tension cable and bend to a desired shape. Second, upon application of a negative pressure, the finger is stiffened up because friction between contact surfaces of layers that prevents their relative movement increases. As a result, their load capacity will be increased proportionally. Tests for stiffness of individual finger and load capacity of the robotic gripper are conducted to validate capability of the design. The results showed a 180-fold increase in stiffness of individual finger and a 30-fold increase in gripper’s load capacity. 
    more » « less
  4. Walking on natural terrain like soil and rock is a challenging problem that has been approached from a variety of strategies such as using sophisticated control methods, compliant legs, and compliant feet. In this paper we explore how to modify granular jamming feet for walking applications by adding stabilizing internal structures. Previous work has explored how granular jamming technology can be used to create compliant and stiffness changing feet that enable locomotion over a diverse range of natural terrain by allowing robot feet to conform around 3D multicomponent terrain such as wood chips and gravel and stiffen, preventing slip. To date, no work has been done to tune granular jamming feet for the specific application of walking. We show that adding internal structures to granular jamming membranes can increase the force they are able to resist without slipping by 1.5x while maintaining their ability to conform around obstacles. When attached to a robot, we see increases in speed of up to 1.4x, decreases in the duty cycle necessary to reach desired foot trajectories of up to 5%, and increases in traction force of up to 1.2x over a diverse set of natural terrain. 
    more » « less
  5. Abstract

    Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human-robot interaction desiring low stiffness. Variable stiffness compliant links provide a solution to enable this flexible manipulation function in human-robot co-working scenarios. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (named Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a maximum stiffness change ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived theoretical model compared with finite element analysis (FEA). The analytical stiffness model is derived using the approach of serially connected beams and superposition combinations. It works not only for thin-walled flexure beams but also for general thick beam models. 3-D printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the FEA and analytical model results. It’s demonstrated that our analytical model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. The developed variable stiffness link method and analytical model are extendable to multiple DSUs with different sizes and parameter configurations to achieve modularization and customization. The advantages of the stiffness change mechanism are rapid actuation, simple structure, and compact layout. These methods and results provide a new conceptual and theoretical basis for the development of new reconfigurable cobot manipulators, variable stiffness structures, and compliant mechanisms.

     
    more » « less