Correlative species distribution models are widely used to quantify past shifts in ranges or communities, and to predict future outcomes under ongoing global change. Practitioners confront a wide range of potentially plausible models for ecological dynamics, but most specific applications only consider a narrow set. Here, we clarify that certain model structures can embed restrictive assumptions about key sources of forecast uncertainty into an analysis. To evaluate forecast uncertainties and our ability to explain community change, we fit and compared 39 candidate multi‐ or joint species occupancy models to avian incidence data collected at 320 sites across California during the early 20th century and resurveyed a century later. We found massive (>20,000 LOOIC) differences in within‐time information criterion across models. Poorer fitting models omitting multivariate random effects predicted less variation in species richness changes and smaller contemporary communities, with considerable variation in predicted spatial patterns in richness changes across models. The top models suggested avian environmental associations changed across time, contemporary avian occupancy was influenced by previous site‐specific occupancy states, and that both latent site variables and species associations with these variables also varied over time. Collectively, our results recapitulate that simplified model assumptions not only impact predictive fit but may mask important sources of forecast uncertainty and mischaracterize the current state of system understanding when seeking to describe or project community responses to global change. We recommend that researchers seeking to make long‐term forecasts prioritize characterizing forecast uncertainty over seeking to present a single best guess. To do so reliably, we urge practitioners to employ models capable of characterizing the key sources of forecast uncertainty, where predictors, parameters and random effects may vary over time or further interact with previous occurrence states.
Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system‐level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi‐scalar community‐level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel‐2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life.
more » « less- Award ID(s):
- 1759756
- NSF-PAR ID:
- 10375741
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecological Applications
- Volume:
- 31
- Issue:
- 6
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract 1. The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends and effects of environmental variables on entire communities. However, modelling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modelling approaches exist to simultaneously provide species and community‐level inferences.
2. We present an ‘integrated community occupancy model’ (ICOM) that unites principles of data integration and hierarchical community modelling in a single framework to provide inferences on species‐specific and community occurrence dynamics using multiple data sources. The ICOM combines replicated and nonreplicated detection–nondetection data sources using a hierarchical framework that explicitly accounts for different detection and sampling processes across data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage‐gleaning birds in the White Mountain National Forest in the northeastern USA from 2010 to 2018 using three independent data sources.
3. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community‐level inferences compared to single data source models, although benefits of integration were dependent on the information content of individual data sources (e.g. amount of replication). Compared to single species models, the ICOM yielded more precise species‐level estimates. Within our case study, the ICOM had the highest out‐of‐sample predictive performance compared to single species models and models that used only a subset of the three data sources.
4. The ICOM provides more precise estimates of occurrence dynamics compared to multi‐species models using single data sources or integrated single‐species models. We further found that the ICOM had improved predictive performance across a broad region of interest with an empirical case study of forest birds. The ICOM offers an attractive approach to estimate species and biodiversity dynamics, which is additionally valuable to inform management objectives of both individual species and their broader communities.
-
Abstract Estimating organisms' responses to environmental variables and taxon associations across broad spatial scales is vital for predicting their responses to climate change. Macroinvertebrates play a major role in wetland processes, but studies simultaneously exploring both community structure and community trait responses to environmental gradients are still lacking. We compiled a global dataset (six continents) from 756 depressional wetlands, including the occurrence of 96 macroinvertebrate families, their phylogenetic tree, and 19 biological traits. Using Bayesian hierarchical joint species distribution models (JSDMs), we estimated macroinvertebrate associations and compared the influences of local and climatic predictors on both individual macroinvertebrate families and their traits. While macroinvertebrate families were mainly related to broad‐scale factors (maximum temperature and precipitation seasonality), macroinvertebrate traits were strongly related to local wetland hydroperiod. Interestingly, macroinvertebrate families and traits both showed positive and negative associations to the same environmental variables. As expected, many macroinvertebrate family occurrences were positively associated with temperature, but a few showed the opposite pattern and were found in cooler or montane regions. We also found that wetland macroinvertebrate communities would likely be affected by changing climates through alterations in traits related to precipitation seasonality, temperature seasonality, and wetland area. Temperature increases may negatively affect collector and shredder functional groups. A decrease in precipitation could lead to reductions in wetland area benefiting drought‐tolerant macroinvertebrates, but it may negatively affect macroinvertebrates lacking those adaptations. Wetland processes may be compromised through broad‐scale environmental changes altering macroinvertebrate family distributions and local hydroperiod shifts altering organism traits. Our complementary family‐based and trait‐based approaches elucidate the complex effects that climate change may produce on wetland ecosystems.
-
Abstract Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000–2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.
-
Abstract The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship‐borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship‐borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping‐stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship‐borne species transport risks, particularly if the ports had similar environments and stepping‐stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic‐based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large‐scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.