Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5–
Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spiketrains. They provide coding benefits including firingrate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signaltonoise ratio. Primary electrosensory afferent spiketrains in weakly electric fish fall into two categories based on the pattern of ISI correlations: nonbursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function
 NSFPAR ID:
 10375779
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Biological Cybernetics
 Volume:
 116
 Issue:
 56
 ISSN:
 14320770
 Page Range / eLocation ID:
 p. 611633
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract ) ground noise that couples into the gravitational wave sensitive frequency band (10– $10\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ ) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6– $100\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ , 1.7– $0.8\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ , 1.8– $1.9\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ , and 2.3– $2.0\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ in the LIGO Livingston corner station. $2.5\text{\hspace{0.17em}}\mathrm{H}\mathrm{z}$ 
Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } = {\text {div}}D^{d+1+\gamma n} \nabla $$ ${L}_{\beta ,\gamma}=\text{div}{D}^{d+1+\gamma n}\nabla $ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ $\Omega \subset {R}^{n}$ of dimension$$\Gamma $$ $\Gamma $ , the now usual distance to the boundary$$d < n1$$ $d<n1$ given by$$D = D_\beta $$ $D={D}_{\beta}$ for$$D_\beta (X)^{\beta } = \int _{\Gamma } Xy^{d\beta } d\sigma (y)$$ ${D}_{\beta}{\left(X\right)}^{\beta}={\int}_{\Gamma}{Xy}^{d\beta}d\sigma \left(y\right)$ , where$$X \in \Omega $$ $X\in \Omega $ and$$\beta >0$$ $\beta >0$ . In this paper we show that the Green function$$\gamma \in (1,1)$$ $\gamma \in (1,1)$G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ ${L}_{\beta ,\gamma}$ , in the sense that the function$$D^{1\gamma }$$ ${D}^{1\gamma}$ satisfies a Carleson measure estimate on$$\big  D\nabla \big (\ln \big ( \frac{G}{D^{1\gamma }} \big )\big )\big ^2$$ $D\nabla (ln(\frac{G}{{D}^{1\gamma}})){}^{2}$ . We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).$$\Omega $$ $\Omega $ 
Abstract The azimuthal (
) correlation distributions between heavyflavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\Delta \varphi $$ $\Delta \phi $ TeV. Results are reported for electrons with transverse momentum$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ $\sqrt{{s}_{\mathrm{NN}}}=5.02$$$4 $4<{p}_{\text{T}}<16$ and pseudorapidity$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The associated charged particles are selected with transverse momentum$$\eta <0.6$$ $\left\eta \right<0.6$$$1 $1<{p}_{\text{T}}<7$ , and relative pseudorapidity separation with the leading electron$$\textrm{GeV}/c$$ $\text{GeV}/c$ . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near and awayside peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \eta  < 1$$ $\left\Delta \eta \right<1$ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.$$\Delta \varphi $$ $\Delta \phi $ 
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in finegrained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ $\stackrel{~}{O}\left(n\right)$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$ time).$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$Counting the number of
k cliques with total edge weight equal to zero in ann node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ $\stackrel{~}{O}\left({n}^{\lceil k/2\rceil}\right)$ ). For odd$$k\ge 3$$ $k\ge 3$k , this bound can be further improved for sparse graphs: for example, counting the number of zeroweight triangles in anm edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ $\stackrel{~}{O}\left(m\right)$k cliques in unweighted graphs, and had worse running times for smallk .Computing the AllPairs Shortest Distances matrix for an
n node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ $\stackrel{~}{O}\left({n}^{2}\right)$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ $\Omega \left({n}^{2}\right)$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ $\stackrel{~}{O}\left({n}^{2.94}\right)$Certifying that an
n variablek CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2  n/O(k)}$$ ${2}^{n/2n/O\left(k\right)}$ time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ ${2}^{n/2}\xb7\text{poly}\left(n\right)$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ $\#$k UNSAT running in time. Therefore we have to exploit nonalgebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ ${2}^{n/2}/{n}^{\omega \left(1\right)}$ Due to the centrality of these problems in finegrained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution toCertifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ ${2}^{4n/5}\xb7\text{poly}\left(n\right)$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ ${2}^{2n/3}\xb7\text{poly}\left(n\right)$n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ ${2}^{n/3}\xb7\text{poly}\left(n\right)$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ ${2}^{0.49991n}\xb7\text{poly}\left(n\right)$ 
Abstract We prove that the Hilbert scheme of
k points on ($${\mathbb {C}}^2$$ ${C}^{2}$ ) is selfdual under threedimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant Ktheory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ action. First, we find a twoparameter family$${\mathbb {C}}^\times _\hbar $$ ${C}_{\u0127}^{\times}$ of selfmirror quiver varieties of type A and study their quantum Ktheory algebras. The desired quantum Ktheory of$$X_{k,l}$$ ${X}_{k,l}$ is obtained via direct limit$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (qLanglands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$l\longrightarrow \infty $$ $l\u27f6\infty $ opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsionfree rank$$\hbar $$ $\u0127$N sheaves on with the help of a different (threeparametric) family of type A quiver varieties with known mirror dual.$${\mathbb {P}}^2$$ ${P}^{2}$