Carbon uptake by the terrestrial biosphere depends on supplies of new nitrogen (N) from symbiotic N fixation, but we lack a framework for scaling fixation accurately and for predicting its response to global change. We scaled symbiotic N fixation from individual N fixers (i.e. plants that host N‐fixing bacteria), by quantifying three key parameters—the abundance of N fixers, whether they are fixing N and their N fixation rates. We apply this framework to black locust, a widespread N‐fixing tree in temperate forests of the eastern United States, and harness long‐term data from southern Appalachian forests to scale fixation from trees to the landscape and over succession. Symbiotic N fixation at the landscape scale peaked in the first decade following forest disturbance, and then declined. This pattern was due to the declining density and declining fixation rates of individual black locust trees over succession. Independent of forest succession, and coincident with chronic atmospheric N deposition, we have evidence suggesting that nodule biomass produced by black locust trees has declined by 83% over the last three decades. This difference in nodule biomass translates to a maximum fixation rate of 11 kg N ha−1 year−1and a landscape average of 1.5 kg N ha−1 year−1in contemporary forests.
Quantifying human impacts on the nitrogen (N) cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom‐up approaches to quantify tree‐based symbiotic BNF based on forest inventory data across the coterminous United States and SE Alaska. For all major N‐fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha−1yr−1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30–0.88 Tg N yr−1across the study area (1.4–3.4 kg N ha−1yr−1). Tree‐based N fixation displays distinct spatial variation that is dominated by two genera,
- NSF-PAR ID:
- 10375787
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis . We find key controls on symbiotic N fixation by black locust over space and time, suggesting lower fixation rates in eastern deciduous forests than previous estimates. Our scaling framework can be applied to other N fixers to aid predictions of symbiotic N fixation and ecosystem response to global change. -
Abstract The intensification of agricultural systems in sub‐Saharan Africa (SSA) is necessary to reduce poverty and improve food security, but increased nutrient applications in smallholder systems could have negative consequences for water quality, greenhouse gas emissions, and air quality. We tracked nitrogen (N) inputs and measured maize (
Zea mays ) biomass, grain yields, N leaching, and nitric oxide (NO) and nitrous oxide fluxes from a clayey soil in Yala, Kenya and a sandy soil in Tumbi, Tanzania, with application rates of 0, 50, 75, 100, 150, and 200 kg N ha−1 yr−1over two cropping seasons. Maize yields were 4.5 times higher in Yala than Tumbi, but yields plateaued at both sites with fertilizer applications at or above 100 kg N ha−1 yr−1. Partial N budgets in Yala were typically negative, meaning more N was exported in maize biomass plus grain or lost from the system than was added in fertilizer. In Tumbi, N budgets were negative at lower fertilizer levels but positive at higher fertilizer levels. At both sites most (96%) of the N was lost through maize biomass/grain removal and N leaching. Fertilizer additions at or less than 50 kg N ha−1 yr−1on these two contrasting sites resulted in minor gaseous N losses, and fertilizer additions less than 200 kg N ha−1 yr−1caused relatively little change to N leaching losses. This indicates that the modest increases in fertilizer use required to improve maize yields will not greatly increase cropland N losses. -
Abstract Tropical dry forests in eastern and southern Africa cover 2.5 × 106km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N <0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.
-
Abstract Limited information on greenhouse gas emissions from tropical dry forest soils still hinders the assessment of the sources/sinks from this ecosystem and their contribution at global scales. Particularly, rewetting events after the dry season can have a significant effect on soil biogeochemical processes and associated exchange of greenhouse gases. This study evaluated the temporal variation and annual fluxes of CO2, N2O, and CH4from soils in a tropical dry forest successional gradient. After a prolonged drought of 5 months, large emissions pulses of CO2and N2O were observed at all sites following first rain events, caused by the “Birch effect,” with a significant effect on the net ecosystem exchange and the annual emissions budget. Annual CO2emissions were greatest for the young forest (8,556 kg C ha−1yr−1) followed by the older forest (7,420 kg C ha−1yr−1) and the abandoned pasture (7,224 kg C ha−1yr−1). Annual emissions of N2O were greatest for the forest sites (0.39 and 0.43 kg N ha−1yr−1) and least in the abandoned pasture (0.09 kg N ha−1yr−1). CH4uptake was greatest in the older forest (−2.61 kg C ha−1yr−1) followed by the abandoned pasture (−0.69 kg C ha−1yr−1) and the young forest (−0.58 kg C ha−1yr−1). Fluxes were mainly influenced by soil moisture, microbial biomass, and soil nitrate and ammonium concentrations. Annual CO2and N2O soil fluxes of tropical dry forests in this study and others from the literature were much lower than the annual fluxes in wetter tropical forests. Conversely, tropical dry forests and abandoned pastures are on average stronger sinks for CH4than wetter tropical forests.
-
Abstract U.S. rice paddies, critical for food security, are increasingly contributing to non‐CO2greenhouse gas (GHG) emissions like methane (CH4) and nitrous oxide (N2O). Yet, the full assessment of GHG balance, considering trade‐offs between soil organic carbon (SOC) change and non‐CO2GHG emissions, is lacking. Integrating an improved agroecosystem model with a meta‐analysis of multiple field studies, we found that U.S. rice paddies were the rapidly growing net GHG emission sources, increased 138% from 3.7 ± 1.2 Tg CO2eq yr−1in the 1960s to 8.9 ± 2.7 Tg CO2eq yr−1in the 2010s. CH4, as the primary contributor, accounted for 10.1 ± 2.3 Tg CO2eq yr−1in the 2010s, alongside a notable rise in N2O emissions by 0.21 ± 0.03 Tg CO2eq yr−1. SOC change could offset 14.0% (1.45 ± 0.46 Tg CO2eq yr−1) of the climate‐warming effects of soil non‐CO2GHG emissions in the 2010s. This escalation in net GHG emissions is linked to intensified land use, increased atmospheric CO2, higher synthetic nitrogen fertilizer and manure application, and climate change. However, no/reduced tillage and non‐continuous irrigation could reduce net soil GHG emissions by approximately 10% and non‐CO2GHG emissions by about 39%, respectively. Despite the rise in net GHG emissions, the cost of achieving higher rice yields has decreased over time, with an average of 0.84 ± 0.18 kg CO2eq ha−1emitted per kilogram of rice produced in the 2010s. The study suggests the potential for significant GHG emission reductions to achieve climate‐friendly rice production in the U.S. through optimizing the ratio of synthetic N to manure fertilizer, reducing tillage, and implementing intermittent irrigation.