skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sonar Observation of Heat Flux of Diffuse Hydrothermal Flows
Abstract Previous work using multibeam sonar to map diffuse hydrothermal flows is extended to estimate the heat output of diffuse flows. In the first step toward inversion, temperature statistics are obtained from sonar data and compared to thermistor data in order to set the value of an empirical constant. Finally, a simple model is used to obtain heat‐flux density from sonar‐derived temperature statistics. The method is applied to data from the Cabled Observatory Vent Imaging Sonar (COVIS) deployed on the Ocean Observatories Initiative's Regional Cabled Array at the ASHES vent field on Axial Seamount. Inversion results are presented as maps of heat‐flux density in MW/m2and as time series of heat‐flux density averaged over COVIS' field of view.  more » « less
Award ID(s):
1736702 1834813
PAR ID:
10375788
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
9
Issue:
10
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Cabled Observatory Vent Imaging Sonar (COVIS) was installed on the Ocean Observatories Initiative's Regional Cabled Array observatory at ASHES hydrothermal vent field on Axial Seamount in July 2018. The acoustic backscatter data recorded by COVIS in August–September 2018, in conjunction with in situ temperature measurements, are used to showcase and verify the use of COVIS for long‐term, quantitative monitoring of hydrothermal discharge. Specifically, sonar data processing generates three‐dimensional backscatter images of the buoyant plumes above major sulfide structures and two‐dimensional maps of diffuse flows within COVIS's field‐of‐view. The backscatter images show substantial changes of plume appearance and orientation that mostly reflect plume bending in the presence of ambient currents and potentially the variations of outflow fluxes. The intensity of acoustic backscatter decreases significantly for highly bent plumes as compared to nearly vertical plumes, reflecting enhanced mixing of plume fluids with seawater driven by ambient currents. A forward model of acoustic backscatter from a buoyancy‐driven plume developed in this study yields a reasonable match with the observation, which paves the way for inversely estimating the source heat flux of a hydrothermal plume from acoustic backscatter measurements. The acoustic observations of diffuse flows show large temporal variations on time scales of hours to days, especially at tidal frequencies, but no apparent long‐term trend. These findings demonstrate COVIS's ability to quantitatively monitor hydrothermal discharge from both focused and diffuse sources to provide the research community with key observational data for studying the linkage of hydrothermal activity with oceanic and geological processes. 
    more » « less
  2. Analysis of the time-dependent behavior of the buoyant plume rising above Grotto Vent (Main Endeavour Field, Juan de Fuca Ridge) as imaged by the Cabled Observatory Vent Imaging Sonar (COVIS) between September 2010 and October of 2015 captures long term time-dependent changes in the direction of background bottom currents independent of broader oceanographic processes, indicating a systematic evolution in vent output along the Endeavour Segment of the Juan de Fuca Ridge. The behavior of buoyant plumes can be quantified by describing the volume, velocity, and orientation of the effluent relative to the seafloor, which are a convolved expression of hydrothermal flux from the seafloor and ocean bottom currents in the vicinity of the hydrothermal vent. We looked at the azimuth and inclination of the Grotto plume, which was captured in three-dimensional acoustic images by the COVIS system, at 3-h intervals during October 2010 and between October 2011 and December 2014. The distribution of plume azimuths shifts from bimodal NW and SW to SE in 2010, 2011, and 2012 to single mode NW in 2013 and 2014. Modeling of the distribution of azimuths for each year with a bimodal Gaussian indicates that the prominence of southward bottom currents decreased systematically between 2010 and 2014. Spectral analysis of the azimuthal data showed a strong semi-diurnal peak, a weak or missing diurnal peak, and some energy in the sub-inertial and weather bands. This suggests the dominant current generating processes are either not periodic (such as the entrainment fields generated by the hydrothermal plumes themselves) or are related to tidal processes. This prompted an investigation into the broader oceanographic current patterns. The surface wind patterns in buoy data at two sites in the Northeast Pacific and the incidence of sea-surface height changes related to mesoscale eddies show little systematic change over this time-period. The limited bottom current data for the Main Endeavour Field and other parts of the Endeavour Segment neither confirm nor refute our observation of a change in the bottom currents. We hypothesize that changes in venting either within the Main Endeavour Field or along the Endeavour Segment have resulted in the changes in background currents. Previous numerical simulations (Thomson et al., J. Geophys. Res., 2009, 114 (C9), C09020) showed that background bottom currents were more likely to be controlled by the local (segment-scale) venting than by outside ocean circulation or atmospheric patterns. 
    more » « less
  3. Abstract An “inverse‐temperature layer” (ITL) of water temperature increasing with depth is predicted based on physical principles and confirmed by in situ observations. Water temperature and other meteorological data were collected from a fixed platform in the middle of a shallow inland lake. The ITL persists year‐around with its depth on the order of one m varying diurnally and seasonally and shallower during daytimes than nighttimes. Water surface heat flux derived from the ITL temperature distribution follows the diurnal cycle of solar radiation up to 300 W m−2during daytime and down to 50 W m−2during nighttime. Solar radiation attenuation in water strongly influences the ITL dynamics and water surface heat flux. Water surface heat flux simulated by two non‐gradient models independent of temperature gradient, wind speed and surface roughness using the data of surface temperature and solar radiation is in close agreement with the ITL based estimates. 
    more » « less
  4. Abstract Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow‐band sodium wind‐temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward transport in July above 90 km. The dominant feature of energy flux is the exponential decrease from 10−2to 10−4 W m−2with the altitude increases from 85 to 100 km and is larger during austral winter. The annual mean thermal diffusivity inferred from enthalpy flux decreases from 303 m2s−1at 85 km to minimum 221 m2s−1at 90 km then increases to 350 m2s−1at 99 km. Results also show that shorter period gravity waves tend to dissipate at higher altitudes and generate more heat transport. The averaged vertical group velocities for high, medium, and low frequency waves are 4.15 m s−1, 1.15 m s−1, and 0.70 m s−1, respectively. Gravity wave heat transport brings significant cooling in the mesopause region at an average cooling rate of 6.7 ± 1.1 K per day. 
    more » « less
  5. Abstract The thermal field within the firn layer on the Greenland Ice Sheet (GrIS) governs meltwater retention processes, firn densification with surface elevation change, and heat transfer from the surface boundary to deep ice. However, there are few observational data to constrain these processes with only sparse in situ temperature time series that do not extend through the full firn depth. Here, we quantify the thermal structure of Western Greenland’s firn column using instrumentation installed in an elevation transect of boreholes extending to 30 and 96 m depths. During the high‐melt summer of 2019, heat gain in the firn layer showed strong elevation dependency, with greater uptake and deeper penetration of heat at lower elevations. The bulk thermal conductivity increased by 15% per 100 m elevation loss due to higher density related to ice layers. Nevertheless, the conductive heat gain remained relatively constant along the transect due to stronger temperature gradients in the near surface firn at higher elevations. The primary driver of heat gain during this high melt summer was latent heat transfer, which increased up to ten‐fold over the transect, growing by 34 MJ m−2per 100 m elevation loss. The deep‐firn temperature gradient beneath the seasonally active layer doubled over a 270‐m elevation drop across the study transect, increasing heat flux from the firn layer into deep ice at lower elevations. Our in situ firn temperature time series offers observational constraints for modeling studies and insights into the future evolution of the percolation zone in a warmer climate. 
    more » « less