skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Global Sensitivity Analysis of a Coupled Hydro-Economic Model and Groundwater Restriction Assessment
Abstract

Assessing impacts on coupled food-water systems that may emerge from water policies, changes in economic drivers and crop productivity requires an understanding of dominant uncertainties. This paper assesses how a candidate groundwater pumping restriction and crop prices, crop yields, surface water price, electricity price, and parametric uncertainties shape economic and groundwater performance metrics from a coupled hydro-economic model (HEM) through a diagnostic global sensitivity analysis (GSA). The HEM used in this study integrates a groundwater depth response, modeled by an Artificial Neural Network (ANN), into a calibrated Positive Mathematical Programming (PMP) agricultural production model. Results show that in addition to a groundwater pumping restriction, performance metrics are highly sensitive to prices and yields of perennial tree crops. These sensitivities become salient during dry years when there is a higher reliance on groundwater. Furthermore, results indicate that performing a GSA for two different water baseline conditions used to calibrate the production model, dry and wet, result in different sensitivity indices magnitudes and factor prioritization. Diagnostic GSA results are used to understand key factors that affect the performance of a groundwater pumping restriction policy. This research is applied to the Wheeler Ridge-Maricopa Water Storage District located in Kern County, California, region reliant on groundwater and vulnerable to surface water shortages.

 
more » « less
NSF-PAR ID:
10375794
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Water Resources Management
ISSN:
0920-4741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (R2 = 0.68), as well as survey data from the United States Department of Agriculture (R2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results.

     
    more » « less
  2. Abstract

    Irrigation management consists of many components. In this work we review and recommend rainfall forecast performance metrics and adjoint methodologies for the use of predictive weather data within the Colorado State University Water Irrigation Scheduler for Efficient Application (WISE). WISE estimates crop water uses to optimize irrigation scheduling. WISE and its components, input requirements, and related software design issues are discussed. The use of predictive weather allows WISE to consider economic opportunity‐costs of decisions to defer water application if rainfall is forecast. These capabilities require an assessment of the system uncertainties and use of weather prediction performance probabilities. Rainfall forecasts and verification performance metrics are reviewed. In addition, model data assimilation methods and adjoint sensitivity concepts are introduced. These assimilation methods make use of observational uncertainties and can link performance metrics to space and time considerations. We conclude with implementation guidance, summaries of available data sources, and recommend a novel adjoint method to address the complex physical linkages and model sensitivities between space and time within the irrigation scheduling physics as a function of soil depth. Such tool improvements can then be used to improve water management decision performance to better conserve and utilize limited water resources for productive use.Editor’s note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.

     
    more » « less
  3. Abstract

    Estimating realistic potential yields by crop type and region is challenging; such yields depend on both biophysical characteristics (e.g., soil characteristics, climate, etc.), and the crop management practices available in any site or region (e.g., mechanization, irrigation, crop cultivars). A broad body of literature has assessed potential yields for selected crops and regions, using several strategies. In this study we first analyze future potential yields of major crop types globally by two different estimation methods, one of which is based on historical observed yields (“Empirical”), while the other is based on biophysical conditions (“Simulated”). Potential yields by major crop and region are quite different between the two methods; in particular, Simulated potential yields are typically 200% higher than Empirical potential yields in tropical regions for major crops. Applying both of these potential yields in yield gap closure scenarios in a global agro-economic model, GCAM, the two estimates of future potential yields lead to very different outcomes for the agricultural sector globally. In the Simulated potential yield closure scenario, Africa, Asia, and South America see comparatively favorable outcomes for agricultural sustainability over time: low land use change emissions, low crop prices, and high levels of self-sufficiency. In contrast, the Empirical potential yield scenario is characterized by a heavy reliance on production and exports in temperate regions that currently practice industrial agriculture. At the global level, this scenario has comparatively high crop commodity prices, and more land allocated to crop production (and associated land use change emissions) than either the baseline or Simulated potential yield scenarios. This study highlights the importance of the choice of methods of estimating potential yields for agro-economic modeling.

     
    more » « less
  4. Abstract

    Food security and the agricultural economy are both dependent on the temporal stability of crop yields. To this end, increasing crop diversity has been suggested as a means to stabilize agricultural yields amidst an ongoing decrease in cropping system diversity across the world. Although diversity confers stability in many natural ecosystems, in agricultural systems the relationship between crop diversity and yield stability is not yet well resolved across spatial scales. Here, we leveraged crop area, production, and price data from 1981 to 2020 to assess the relationship between crop diversity and the stability of both economic and caloric yields at the state level within the USA. We found that, after controlling for climatic instability and differences in irrigated area, crop diversity was positively associated with economic yield stability but negatively associated with caloric yield stability. Further, we found that crops with a propensity for increasing economic yield stability but reducing caloric yield stability were often found in the most diverse states. We propose that price responses to changes in production for high-value crops underly the positive relationship between diversity and economic yield stability. In contrast, spatial concentration of calorie-dense crops in low-diversity states contributes to the negative relationship between diversity and caloric yield stability. Our results suggest that the relationship between crop diversity and yield stability is not universal, but instead dependent on the spatial scale in question and the stability metric of interest.

     
    more » « less
  5. Abstract

    Labor markets can shape the impacts of global market developments and local sustainability policies on agricultural outcomes, including changes in production and land use. Yet local labor market outcomes, including agricultural employment, migration and wages, are often overlooked in integrated assessment models (IAMs). The relevance of labor markets has become more important in recent decades, with evidence of diminished labor mobility in the United States (US) and other developed countries. We use the SIMPLE-G (Simplified International Model of agricultural Prices, Land use, and the Environment) modeling framework to investigate the impacts of a global commodity price shock and a local sustainable groundwater use policy in the US. SIMPLE-G is a multi-scale framework designed to allow for integration of economic and biophysical determinants of sustainability, using fine-scale geospatial data and parameters. We use this framework to compare the impacts of the two sets of shocks under two contrasting assumptions: perfect mobility of agricultural labor, as generally implicit in global IAMs, and relatively inelastic labor mobility (‘sticky’ agricultural labor supply response). We supplement the numerical simulations with analytical results from a stylized two-input model to provide further insights into the impacts of local and global shocks on agricultural labor, crop production and resource use. Findings illustrate the key role that labor mobility plays in shaping both local and global agricultural and environmental outcomes. In the perfect labor mobility scenario, the impact of a commodity price boom on crop production, employment and land-use is overestimated compared with the restricted labor mobility case. In the case of the groundwater sustainability policy, the perfect labor mobility scenario overestimates the reduction in crop production and employment in directly targeted grids as well as spillover effects that increase employment in other grids. For both shocks, impacts on agricultural wages are completely overlooked if we ignore rigidities in agricultural labor markets.

     
    more » « less