skip to main content


Title: Biomarker and Pollen Evidence for Late Pleistocene Pluvials in the Mojave Desert
Abstract

The climate of the southwestern North America has experienced profound changes between wet and dry phases over the past 200 Kyr. To better constrain the timing, magnitude, and paleoenvironmental impacts of these changes in hydroclimate, we conducted a multiproxy biomarker study from samples collected from a new 77 m sediment core (SLAPP‐SRLS17) drilled in Searles Lake, California. Here, we use biomarkers and pollen to reconstruct vegetation, lake conditions, and climate. We find that δD values of long chainn‐alkanes are dominated by glacial to interglacial changes that match nearby Devils Hole calcite δ18O variability, suggesting both archives predominantly reflect precipitation isotopes. However, precipitation isotopes do not simply covary with evidence for wet‐dry changes in vegetation and lake conditions, indicating a partial disconnect between large scale atmospheric circulation tracked by precipitation isotopes and landscape moisture availability. Increased crenarchaeol production and decreased evidence for methane cycling reveal a 10 Kyr interval of a fresh, productive, and well‐mixed lake during Termination II, corroborating evidence for a paleolake highstand from shorelines and spillover deposits in downstream Panamint Basin and Death Valley during the end of the penultimate (Tahoe) glacial (140–130 ka). At the same time brGDGTs yield the lowest temperature estimates (mean months above freezing = 9°C ± 3°C) of the 200 Kyr record. These limnological conditions are not replicated elsewhere in the 200 Kyr record, suggesting that the Heinrich stadial 11 highstand was wetter than the last glacial maximum and Heinrich 1 (18–15 ka).

 
more » « less
Award ID(s):
1903665 1903544 1903519
NSF-PAR ID:
10375817
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
10
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last few million years, Africa’s climate exhibits a long-term drying trend with episodes of high climate variability coinciding with the intensification of glacial-interglacial cycles. Of particular interest, is a shift to drier and more variable conditions noted in the Olorgesailie Formation (Kenya) between 500 and 300 thousand years ago (ka) in which Potts et al. (2018) observed a turnover of ~85% of large-body mammalian fauna to smaller-body related taxa and suggested that the shift was an evolutionary response to better adapt to the changing climate. However, an erosional gap in the Olorgesailie record during this time interval means that the cause of this faunal shift is still an outstanding question. To understand East African climate variability during the Mid-Pleistocene, we analyze Lake Malawi drill core MAL 05–1 (~11ºS, 34ºE) to investigate if a specific climatic event stands out as a possible driver of the dramatic change observed in the East African mammal community. We use organic geochemical proxies including branched glycerol diaklyl glycerol tetraethers (brGDGTs; the MBT′5ME index) andleaf wax carbon and deuterium isotopes to develop high-resolution temperature, vegetation, and precipitation records, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~9°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~330 ka. Preliminary leaf wax deuterium isotopic values show an enrichment that coincides with deglacial warmings suggesting a shift to more arid conditions during interglacial than in glacial periods. This change from a cold/wet glacial to a warm/dry interglacial contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa which transitioned to a warm/wet Holocene. Leaf wax carbon isotopes are presently being analyzed to understand past shifts in C3 vs C4 vegetation type, which can be related to climatic conditions. We propose that the major warming and drying during Termination V in East Africa represents a significant abrupt change in the climate of eastern Africa and was a likely driver of the major faunal turnover noted in the region. 
    more » « less
  2. Roughly 85% of mammalian herbivore species in southern Kenya were replaced by smaller, more adaptable species at some time between 400,000 years ago (400ka) and 500 ka. While this major taxonomic turnover has been attributed to a shift to more a more arid and variable climate and tectonic activity, we wondered if a particularly abrupt shift, a “tipping point,” in climate at some time between 400 and 500 ka was the cause. We analyzed the highest resolution paleoclimate record available in East Africa, Lake Malawi drill core MAL05-1B, for organic geochemical proxies, including branched glycerol dialkyl glycerol tetraethers (GDGTs) and leaf wax deuterium isotopic records to develop the temperature and precipitation history, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~6°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~430 ka. Surprisingly, even more intense warming occurred during Glacial Termination VI around 510 ka. Notably, these deglacial warmings coincide with enriched leaf wax deuterium isotopic values suggesting a shift to more arid conditions in interglacials MIS 13 and 11 than in glacials MIS 14 and 12, respectively. These changes from cold/wet glacials to warm/dry interglacials contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa that transitioned to a warm/wet Holocene. We propose that the major warming and drying during Termination V in the Malawi basin represents a significant abrupt change that impacted much of eastern Africa around 430 ka and was a likely driver of the major faunal turnover noted in the region. 
    more » « less
  3. Abstract

    Sub‐centennial oxygen (δ18O) isotopes of ostracod and authigenic calcite from Squanga Lake provides evidence of hydroclimatic extremes and a series of post‐glacial climate system reorganizations for the interior region of northwest Canada. Authigenic calciteδ18O values range from −16‰ to −21‰ and are presently similar to modern lake water and annual precipitation values. Ostracodδ18O record near identical trends with calcite, offset by +1.7 ± 0.6‰. At 11 ka BP (kaBP = thousands of years before 1950), higherδ18O values reflect decreased precipitation−evaporation (P−E) balance from residual ice sheet influences on moisture availability. A trend to lowerδ18O values until ∼8 ka BP reflects a shift to wetter conditions, and reorganization of atmospheric circulation. The last millennium and modern era are relatively dry, though not as dry as the early Holocene extreme. North Pacific climate dynamics remained an important driver of P−E balance in northwest Canada throughout the Holocene.

     
    more » « less
  4. Singer, B. ; Jiang, G. (Ed.)
    The Qaidam Basin marks a crucial boundary between the Westerlies and the Asian summer monsoons. Previous studies in the Qaidam Basin have advanced our knowledge of the paleoclimate over glacial to interglacial cycles. However, our understanding of the paleoclimatic sensitivity of the Qaidam Basin to the relative strength of these two climatic driving forces remains limited due to the lack of regional paleoclimatic reconstructions. The Qaidam Basin is proposed as a regional and global eolian dust source during the glacial periods, during which a cold, dry climate is associated with the equatorward shift of the jet stream. On the contrary, paleoshoreline records suggest that a highstand lake stage prevailed in late Marine Isotope Stage 3 (MIS 3) and lasted until 15 ka. To address this conundrum, we have applied an integrated approach to reconstructing the regional paleoclimatic history by combining compound-specific isotope analysis, lake temperature reconstruction, and numerical modeling. Our results show varying paleoclimate associated with the dynamic climate boundary since 45 ka: (1) a wet climate during late MIS 3, when the Asian summer monsoons are strengthened under high summer insolation and penetrate further into Central Asia; (2) a general cold, dry but wetter than at present climate in the Last Glacial Maximum (LGM), when the Asian summer monsoons retreat and the Westerlies become dominant; and (3) three short periods of extreme aridity corresponding to the Younger Dryas and Heinrich 2 and 4 events, when the normal moisture transport via the Westerlies and Asian summer monsoons is interrupted. The numerical modeling supports an increase in the effective precipitation during the LGM due to reduced evaporation under low summer insolation. These results suggest that the Westerlies and Asian summer monsoons alternately controlled the climate in the Qaidam Basin in response to precessional forcing during the late Pleistocene. 
    more » « less
  5. Most paleoclimate studies of Mainland Southeast Asia hydroclimate focus on the summer monsoon, with few studies investigating rainfall in other seasons. Here, we present a multiproxy stalagmite record (45,000 to 4,000 years) from central Vietnam, a region that receives most of its annual rainfall in autumn (September-November). We find evidence of a prolonged dry period spanning the last glacial maximum that is punctuated by an abrupt shift to wetter conditions during the deglaciation at ~14 ka. Paired with climate model simulations, we show that sea-level change drives autumn monsoon rainfall variability on glacial-orbital timescales. Consistent with the dry signal in the stalagmite record, climate model simulations reveal that lower glacial sea level exposes land in the Gulf of Tonkin and along the South China Shelf, reducing convection and moisture delivery to central Vietnam. When sea level rises and these landmasses flood at ~14 ka, moisture delivery to central Vietnam increases, causing an abrupt shift from dry to wet conditions. On millennial timescales, we find signatures of well-known Heinrich Stadials (HS) (dry conditions) and Dansgaard–Oeschger Events (wet conditions). Model simulations show that during the dry HS, changes in sea surface temperature related to meltwater forcing cause the formation of an anomalous anticyclone in the Western Pacific, which advects dry air across central Vietnam, decreasing autumn rainfall. Notably, sea level modulates the magnitude of millennial-scale dry and wet phases by muting dry events and enhancing wet events during periods of low sea level, highlighting the importance of this mechanism to autumn monsoon variability. 
    more » « less