skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Shear‐Wave Splitting in the Mantle Wedge: Role of Elastic Tensor Symmetry of Olivine Aggregates
Abstract

Using a 3‐D mantle wedge flow field for a generic oblique subduction system, we calculate elastic tensors of mineral aggregates in the mantle wedge for A‐, B‐, C‐, and E‐type olivine crystal preferred orientations (CPO) and apply the calculated elastic tensor in the forward calculation of shear‐wave splitting (SWS) through the mantle wedge. We find that the hexagonal approximation of the full tensor does not affect the SWS parameters (the fast direction and the delay time) significantly for all CPO types except that the delay time for C‐type CPO becomes shorter. Additionally, we find that despite the 3‐D mantle flow field that results from oblique subduction, the fast direction is margin‐normal for A‐, C‐ and E‐type CPOs and margin‐parallel for B‐type CPO.

 
more » « less
NSF-PAR ID:
10375830
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flow in the Earth's mantle causes the preferred orientation of crystals called lattice/crystal preferred orientation (LPO or CPO). This preferred orientation is one of the main reasons why seismic anisotropy is observed. Seismic anisotropy observations could therefore be used to constrain the mantle flow in geodynamic models through tracking CPO evolution, and computing the resulting elastic tensor and the anisotropy predicted at the surface. Even though there are many types of CPO models, only a few studies include CPO calculations due to the complexity and computational cost. Here, we implemented an extended version of the CPO model D‐Rex into the open‐source community geodynamics codeASPECT. We show that the implementation is correct, how to use it, and that it is feasible and important to use in large 3D models. We also show that it is important to calculate CPO, especially for models focusing on plate boundary of smaller scale flow because the resulting fast axis directions can greatly deviate from the flow direction. The added infrastructure will also allow for future enhancement, testing, and even replacement of the CPO model.

     
    more » « less
  2. Abstract

    We analyze peridotites from a wide range of tectonic settings to investigate relationships between olivine crystallographic preferred orientation (CPO) and deformation conditions in naturally deformed rocks. These samples preserve the five olivine CPO types (A‐ through E‐type) that rock deformation experiments have suggested are controlled by water content, temperature, stress magnitude, and pressure. The naturally deformed specimens newly investigated here (65 samples) and compiled from an extensive literature review (445 samples) reveal that these factors may matter less than deformation history and/or geometry. Some trends support those predicted by experimentally determined parametric dependence, but several observations disagree—namely, thatallCPO types are able to form at very low water contents and stresses and that there is no clear relationship between water content and CPO type. This implies that at the low stresses typical of deformation in the mantle, CPO type more commonly varies as a function of strain geometry. Because olivine CPO is primarily responsible for seismic anisotropy in the upper mantle, the results of this study have several implications. These include (1) the many olivine CPO types recorded in samples from individual localities may explain some of the complex seismic anisotropy patterns observed in the continental mantle, and (2) B‐type CPO—where olivine's “fast axes” align perpendicular to flow direction—occurs under many more conditions than traditionally thought. This study highlights the need for more experiments and the difficulty in using olivine CPO in naturally deformed peridotites to infer deformation conditions.

     
    more » « less
  3. Abstract

    Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion.

     
    more » « less
  4. Abstract

    This study represents the first campaign‐style teleseismic shear wave splitting (SWS) investigation of central Myanmar, an area that is tectonically controlled by the oblique subduction of the Indian Plate underneath the Eurasian Plate. The resulting 678 well‐defined and 247 null SWS measurements obtained from recently deployed 71 broadband seismic stations show that the Indo‐Burma Ranges (IBR) possess mostly N‐S fast orientations that are parallel to the trend of the depth contours of the subducted slab. Relative to the global average of 1.0 s, extremely large splitting times with station‐averaged values ranging from 1.28 to 2.79 s and an area‐averaged value of 2.09 ± 0.55 s are observed in the IBR. In contrast, the Central Basin (CB) and the Shan Plateau (SP) are characterized by slightly larger than normal splitting times. The fast orientations observed in the CB are mostly NE‐SW in the northern part of the study area, N‐S in the central part, and NW‐SE in the southern part. The fast orientations change from nearly N‐S along the N‐S oriented Sagaing Fault, to NW‐SE in the central and eastern portions of the SP. These observations, together with SWS measurements using local S events, crustal anisotropy measurements using P‐to‐S receiver functions, and the estimated depth of the source of anisotropy using the spatial coherency of the splitting parameters, suggest the presence of a trench‐parallel sub‐slab flow system driven by slab rollback, a trench‐perpendicular corner flow, and a trench‐parallel flow possibly entering the mantle wedge through a slab window or gap.

     
    more » « less
  5. Abstract

    Seismic anisotropy arises in the upper mantle due to the alignment of olivine crystal lattices and is often used to interpret mantle flow direction. Experiments on the evolution of olivine crystal‐preferred orientation (CPO) have found that the texture that develops is dependent on many factors, including water content, differential stress, preexisting CPO, and deformation kinematics. To evaluate the role of these factors in naturally deformed samples, we present microstructural transects across three shear zones in the Josephine Peridotite. Samples from these shear zones exhibit a mixture of A‐type textures, which have been associated with dry conditions and primary activation of the olivine [100](010) slip system, and of E‐type textures, which have been associated with wetter conditions and primary activation of the [100](001) slip system. CPOs with characteristics of both A‐type and E‐type textures are also present. CPO type does not evolve systematically as a function of either strain or water content. We used a micromechanical model to evaluate the roles of preexisting texture and kinematics on olivine CPO evolution. We find that the preexisting texture controls CPO evolution at strains up to 5 during simple shear. Kinematics involving a combination of simple shear and pure shear can explain the olivine CPOs at higher strain. Hence, preexisting CPOs and deformation kinematics should be considered in the interpretation of CPOs measured in naturally deformed rocks and of large‐scale patterns in upper‐mantle seismic anisotropy.

     
    more » « less