skip to main content

Title: Permanence via invasion graphs: incorporating community assembly into modern coexistence theory
Abstract

To understand the mechanisms underlying species coexistence, ecologists often study invasion growth rates of theoretical and data-driven models. These growth rates correspond to average per-capita growth rates of one species with respect to an ergodic measure supporting other species. In the ecological literature, coexistence often is equated with the invasion growth rates being positive. Intuitively, positive invasion growth rates ensure that species recover from being rare. To provide a mathematically rigorous framework for this approach, we prove theorems that answer two questions: (i) When do the signs of the invasion growth rates determine coexistence? (ii) When signs are sufficient, which invasion growth rates need to be positive? We focus on deterministic models and equate coexistence with permanence, i.e., a global attractor bounded away from extinction. For models satisfying certain technical assumptions, we introduce invasion graphs where vertices correspond to proper subsets of species (communities) supporting an ergodic measure and directed edges correspond to potential transitions between communities due to invasions by missing species. These directed edges are determined by the signs of invasion growth rates. When the invasion graph is acyclic (i.e. there is no sequence of invasions starting and ending at the same community), we show that permanence more » is determined by the signs of the invasion growth rates. In this case, permanence is characterized by the invasibility of all$$-i$$-icommunities, i.e., communities without speciesiwhere all other missing species have negative invasion growth rates. To illustrate the applicability of the results, we show that dissipative Lotka-Volterra models generically satisfy our technical assumptions and computing their invasion graphs reduces to solving systems of linear equations. We also apply our results to models of competing species with pulsed resources or sharing a predator that exhibits switching behavior. Open problems for both deterministic and stochastic models are discussed. Our results highlight the importance of using concepts about community assembly to study coexistence.

« less
Authors:
;
Award ID(s):
1716803
Publication Date:
NSF-PAR ID:
10375836
Journal Name:
Journal of Mathematical Biology
Volume:
85
Issue:
5
ISSN:
0303-6812
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble$$\hbox {CLE}_{\kappa '}$$CLEκfor$$\kappa '$$κin (4, 8) that is drawn on an independent$$\gamma $$γ-LQG surface for$$\gamma ^2=16/\kappa '$$γ2=16/κ. The results are similar in flavor to the ones from our companion paper dealing with$$\hbox {CLE}_{\kappa }$$CLEκfor$$\kappa $$κin (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\hbox {CLE}_{\kappa '}$$CLEκin terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “CLE Percolations” described the law of interfaces obtained when coloring the loops of a$$\hbox {CLE}_{\kappa '}$$CLEκindependently into two colors with respective probabilitiespand$$1-p$$1-p. This description was complete up to one missing parameter$$\rho $$ρ. The results of the present paper about CLE on LQG allow us to determine its value in terms ofpand$$\kappa '$$κ. It shows in particular that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κare related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {FK}_q$$FKqpercolation and theq-state Potts model (which makes sense evenmore »for non-integerqbetween 1 and 4) if and only if$$q=4\cos ^2(4\pi / \kappa ')$$q=4cos2(4π/κ). This provides further evidence for the long-standing belief that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κrepresent the scaling limits of$$\hbox {FK}_q$$FKqpercolation and theq-Potts model whenqand$$\kappa '$$κare related in this way. Another consequence of the formula for$$\rho (p,\kappa ')$$ρ(p,κ)is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.

    « less
  2. Abstract

    We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$2O and D$$_2$$2O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ρ(T), isothermal compressibility$$\kappa _T(T)$$κT(T), and self-diffusion coefficientsD(T) of H$$_2$$2O and D$$_2$$2O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$CP(T)obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$2O and D$$_2$$2O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$2O and D$$_2$$2O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$2O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$Pc=167±9 MPa,$$T_c = 159 \pm 6$$Tc=159±6 K, and$$\rho _c = 1.02 \pm 0.01$$ρc=1.02±0.01 g/cm$$^3$$3. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$2O is estimated to be$$P_c = 176 \pm 4$$Pc=176±4 MPa,$$T_c = 177 \pm 2$$Tc=177±2 K, and$$\rho _c = 1.13 \pm 0.01$$ρc=1.13±0.01 g/cm$$^3$$3. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effectsmore »(i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$Pc=203±4 MPa,$$T_c = 175 \pm 2$$Tc=175±2 K, and$$\rho _c = 1.03 \pm 0.01$$ρc=1.03±0.01 g/cm$$^3$$3). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$Tcfor D$$_2$$2O and, particularly, H$$_2$$2O suggest that improved water models are needed for the study of supercooled water.

    « less
  3. Abstract

    In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization withnon-Lipschitzianvalue functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a$$(T+1)$$(T+1)-stage stochastic MINLP satisfyingL-exact Lipschitz regularization withd-dimensional state spaces, to obtain an$$\varepsilon $$ε-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by$${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$O((2LTε)d), and is lower bounded by$${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$O((LT4ε)d)for the general case or by$${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$O((LT8ε)d/2-1)for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity dependspolynomiallyon the number of stages. We further show that the iteration complexity dependslinearlyonT, if all the state spaces are finite sets, or ifmore »we seek a$$(T\varepsilon )$$(Tε)-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale withT. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.

    « less
  4. Abstract

    Fix a positive integernand a finite field$${\mathbb {F}}_q$$Fq. We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$rk(E), then-Selmer group$$\text {Sel}_n(E)$$Seln(E), and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$d2over$${\mathbb {F}}_q(t)$$Fq(t). We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.

  5. Abstract

    We study the performance of Markov chains for theq-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the two relevant phases for theq-state Potts model on thed-regular random graph for all integers$$q,d\ge 3$$q,d3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on thed-regular tree, the two phases coexist (as possiblemore »metastable states). The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for largeqand$$d\ge 5$$d5. Based on our new structural understanding of the model, our second contribution is to obtain metastability results for two classical Markov chains for the Potts model. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, by showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen–Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph “planting” argument combined with delicate bounds on random-graph percolation.

    « less