skip to main content

Title: The K2 Galactic Archaeology Program: Overview, target selection, and survey properties

K2 was a community-driven NASA mission where all targets were proposed through guest observer programmes. Here we provide an overview of one of the largest of these endeavours, the K2 Galactic Archaeology Programme (K2GAP), with about 25 per cent of the observed targets being allocated to this programme. K2GAP provides asteroseismic parameters for about 23 000 giant stars across the Galaxy, which together with spectroscopic stellar parameters can give age and masses of stars. We discuss in detail the target selection procedure and provide a python program that implements the selection function ( Broadly speaking, the targets were selected on 2MASS colour J − Ks > 0.5, with finely tuned adjustments for each campaign. We discuss the detection completeness of the asteroseismic parameters νmax and Δν. About 14 per cent of giants were found to miss νmax detections and it was difficult to detect Δν for RC stars. Making use of the selection function, we compare the observed distribution of asteroseismic masses to theoretical predictions. The median asteroseismic mass is higher by about 4 per cent compared to predictions. We provide a selection-function-matched mock catalogue of stars based on a synthetic model of the Galaxy for the community to use in subsequent analyses of the K2GAP more » data set (

« less
; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 1970-1987
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Analyses of data from spectroscopic and astrometric surveys have led to conflicting results concerning the vertical characteristics of the Milky Way. Ages are often used to provide clarity, but typical uncertainties of >40 per cent from photometry restrict the validity of the inferences made. Using the Kepler APOKASC sample for context, we explore the global population trends of two K2 campaign fields (3 and 6), which extend further vertically out of the Galactic plane than APOKASC. We analyse the properties of red giant stars utilizing three asteroseismic data analysis methods to cross-check and validate detections. The Bayesian inference tool PARAM is used to determine the stellar masses, radii, and ages. Evidence of a pronounced red giant branch bump and an [α/Fe] dependence on the position of the red clump is observed from the K2 fields radius distribution. Two peaks in the age distribution centred at ∼5 and ∼12 Gyr are found using a sample with σage < 35 per cent. In comparison with Kepler, we find the older peak to be more prominent for K2. This age bimodality is also observed based on a chemical selection of low-[α/Fe] (≤0.1) and high-[α/Fe] (>0.1) stars. As a function of vertical distance from the Galactic mid-plane (|Z|),more »the age distribution shows a transition from a young to old stellar population with increasing |Z| for the K2 fields. Further coverage of campaign targets with high-resolution spectroscopy is required to increase the yield of precise ages achievable with asteroseismology.

    « less

    We present the first asteroseismic results for δ Scuti and γ Doradus stars observed in Sectors 1 and 2 of the TESS mission. We utilize the 2-min cadence TESS data for a sample of 117 stars to classify their behaviour regarding variability and place them in the Hertzsprung–Russell diagram using Gaia DR2 data. Included within our sample are the eponymous members of two pulsator classes, γ Doradus and SX Phoenicis. Our sample of pulsating intermediate-mass stars observed by TESS also allows us to confront theoretical models of pulsation driving in the classical instability strip for the first time and show that mixing processes in the outer envelope play an important role. We derive an empirical estimate of 74 per cent for the relative amplitude suppression factor as a result of the redder TESS passband compared to the Kepler mission using a pulsating eclipsing binary system. Furthermore, our sample contains many high-frequency pulsators, allowing us to probe the frequency variability of hot young δ Scuti stars, which were lacking in the Kepler mission data set, and identify promising targets for future asteroseismic modelling. The TESS data also allow us to refine the stellar parameters of SX Phoenicis, which is believed to be a blue straggler.

  3. ABSTRACT Precise asteroseismic parameters can be used to quickly estimate radius and mass distributions for large samples of stars. A number of automated methods are available to calculate the frequency of maximum acoustic power (νmax) and the frequency separation between overtone modes (Δν) from the power spectra of red giants. However, filtering through the results requires manual vetting, elaborate averaging across multiple methods or sharp cuts in certain parameters to ensure robust samples of stars free of outliers. Given the importance of ensemble studies for Galactic archaeology and the surge in data availability, faster methods for obtaining reliable asteroseismic parameters are desirable. We present a neural network classifier that vets Δν by combining multiple features from the visual Δν vetting process. Our classifier is able to analyse large numbers of stars, determining whether their measured Δν are reliable and thus delivering clean samples of oscillating stars with minimal effort. Our classifier is independent of the method used to obtain νmax and Δν, and therefore can be applied as a final step to any such method. Tests of our classifier’s performance on manually vetted Δν measurements reach an accuracy of 95 per cent. We apply the method to giants observed by the K2more »Galactic Archaeology Program and find that our results retain stars with astrophysical oscillation parameters consistent with the parameter distributions already defined by well-characterized Kepler red giants.« less
  4. ABSTRACT We present chemical abundances for 21 elements (from Li to Eu) in 150 metal-poor Galactic stars spanning −4.1 < [Fe/H] < −2.1. The targets were selected from the SkyMapper survey and include 90 objects with [Fe/H] ≤ −3 of which some 15 have [Fe/H] ≤ −3.5. When combining the sample with our previous studies, we find that the metallicity distribution function has a power-law slope of Δ(log N)/Δ[Fe/H] = 1.51 ± 0.01 dex per dex over the range −4 ≤ [Fe/H] ≤ −3. With only seven carbon-enhanced metal-poor stars in the sample, we again find that the selection of metal-poor stars based on SkyMapper filters is biased against highly carbon-rich stars for [Fe/H] > −3.5. Of the 20 objects for which we could measure nitrogen, 11 are nitrogen-enhanced metal-poor (NEMP) stars. Within our sample, the high NEMP fraction (55 per cent ± 21 per cent) is compatible with the upper range of predicted values (between 12 per cent and 35 per cent). The chemical abundance ratios [X/Fe] versus [Fe/H] exhibit similar trends to previous studies of metal-poor stars and Galactic chemical evolution models. We report the discovery of nine new r-I stars, four new r-II stars, one of which is the most metal-poor known, nine low-α starsmore »with [α/Fe] ≤ 0.15 as well as one unusual star with [Zn/Fe] = +1.4 and [Sr/Fe] = +1.2 but with normal [Ba/Fe]. Finally, we combine our sample with literature data to provide the most extensive view of the early chemical enrichment of the Milky Way Galaxy.« less

    Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars’ masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 per cent for radius and better than 0.2 per cent for surface gravity). We also analyse the importance of precisemore »orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 per cent accuracy. These results add five valuable data points to the mass–radius diagram of fully convective M-dwarfs.

    « less