skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ice Sheet and Climate Processes Driving the Uncertainty in Projections of Future Sea Level Rise: Findings From a Structured Expert Judgement Approach
Abstract The ice sheets covering Antarctica and Greenland present the greatest uncertainty in, and largest potential contribution to, future sea level rise. The uncertainty arises from a paucity of suitable observations covering the full range of ice sheet behaviors, incomplete understanding of the influences of diverse processes, and limitations in defining key boundary conditions for the numerical models. To investigate the impact of these uncertainties on ice sheet projections we undertook a structured expert judgement study. Here, we interrogate the findings of that study to identify the dominant drivers of uncertainty in projections and their relative importance as a function of ice sheet and time. We find that for the 21st century, Greenland surface melting, in particular the role of surface albedo effects, and West Antarctic ice dynamics, specifically the role of ice shelf buttressing, dominate the uncertainty. The importance of these effects holds under both a high‐end 5°C global warming scenario and another that limits global warming to 2°C. During the 22nd century the dominant drivers of uncertainty shift. Under the 5°C scenario, East Antarctic ice dynamics dominate the uncertainty in projections, driven by the possible role of ice flow instabilities. These dynamic effects only become dominant, however, for a temperature scenario above the Paris Agreement 2°C target and beyond 2100. Our findings identify key processes and factors that need to be addressed in future modeling and observational studies in order to reduce uncertainties in ice sheet projections.  more » « less
Award ID(s):
2103754
PAR ID:
10375897
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
10
Issue:
10
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Mass loss from polar ice sheets is becoming the dominant contributor to current sea level changes, as well as one of the largest sources of uncertainty in sea level projections. The spatial pattern of sea level change is sensitive to the geometry of ice sheet mass changes, and local sea level changes can deviate from the global mean sea level change due to gravitational, Earth rotational and deformational (GRD) effects. The pattern of GRD sea level change associated with the melting of an ice sheet is often considered to remain relatively constant in time outside the vicinity of the ice sheet. For example, in the sea level projections from the most recent IPCC sixth assessment report (AR6), the geometry of ice sheet mass loss was treated as constant during the 21st century. However, ice sheet simulations predict that the geometry of ice mass changes across a given ice sheet and the relative mass loss from each ice sheet will vary during the coming century, producing patters of global sea level changes that are spatiotemporally variable. We adopt a sea level model that includes GRD effects and shoreline migration to calculate time-varying sea level patterns associated with projections of the Greenland and Antarctic Ice Sheets during the coming century. We find that in some cases, sea level changes can be substantially amplified above the global mean early in the century, with this amplification diminishing by 2100. We explain these differences by calculating the contributions of Earth rotation as well as gravitational and deformational effects to the projected sea level changes separately. We find in one case, for example, that ice gain on the Antarctic Peninsula can cause an amplification of up to 2.9 times the global mean sea level equivalent along South American coastlines due to positive interference of GRD effects. To explore the uncertainty introduced by differences in predicted ice mass geometry, we predict the sea level changes following end-member mass loss scenarios for various regions of the Antarctic Ice Sheet from the ISMIP6 model ensemblely, and find that sea level amplification above the global mean sea level equivalent differ by up to 1.9 times between different ice mass projections along global coastlines outside of Greenland and Antarctica. This work suggests that assessments of future sea level hazard should consider not only the integrated mass changes of ice sheets, but also temporal variations in the geometry of the ice mass changes across the ice sheets. As well, this study highlights the importance of constraining the relative timing of ice mass changes between the Greenland and Antarctic Ice Sheets. 
    more » « less
  2. Previous studies have interpreted Last Interglacial (LIG;∼129–116 ka) sea‐level estimates in multiple different ways to calibrate projections of future Antarctic ice‐sheet (AIS) mass loss and associated sea‐level rise. This study systematically explores the extent to which LIG constraints could inform future Antarctic contributions to sea‐level rise. We develop a Gaussian process emulator of an ice‐sheet model to produce continuous probabilistic projections of Antarctic sea‐level contributions over the LIG and a future high‐emissions scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG constraints to find associated likelihoods of model parameterizations. LIG estimates inform both the probability of past and future ice‐sheet instabilities and projections of future sea‐level rise through 2150. Although best‐available LIG estimates do not meaningfully constrain Antarctic mass loss projections or physical processes until 2060, they become increasingly informative over the next 130 years. Uncertainties of up to 50 cm remain in future projections even if LIG Antarctic mass loss is precisely known (±5 cm), indicating that there is a limit to how informative the LIG could be for ice‐sheet model future projections. The efficacy of LIG constraints on Antarctic mass loss also depends on assumptions about the Greenland ice sheet and LIG sea‐level chronology. However, improved field measurements and understanding of LIG sea levels still have potential to improve future sea‐level projections, highlighting the importance of continued observational efforts. 
    more » « less
  3. Observational estimates of Antarctic ice loss have accelerated in recent decades, and worst-case scenarios of modeling studies have suggested potentially catastrophic sea level rise (~2 meters) by the end of the century. However, modeled contributions to global mean sea level from the Antarctic ice-sheet (AIS) in the 21st century are highly uncertain, in part because ice-sheet model parameters are poorly constrained. Individual ice-sheet model runs are also deterministic and not computationally efficient enough to generate the continuous probability distributions required for incorporation into a holistic framework of probabilistic sea-level projections. To address these shortfalls, we statistically emulate an ice-sheet model using Gaussian Process (GP) regression. GP modeling is a non-parametric machine-learning technique which maps inputs (e.g. forcing or model parameters) to target outputs (e.g. sea-level contributions from the Antarctic ice-sheet) and has the inherent and important advantage that emulator uncertainty is explicitly quantified. We construct emulators for the last interglacial period and an RCP8.5 scenario, and separately for the western, eastern, and total AIS. Separate emulation of western and eastern AIS is important because their evolutions and physical responses to climate forcing are distinct. The emulators are trained on 196 ensemble members for each scenario, composed by varying the parameters of maximum rate of ice-cliff wastage and the coefficient of hydrofracturing. We condition the emulators on last interglacial proxy sea-level records and modern GRACE measurements and exclude poor-fitting ensemble members. The resulting emulators are sampled to produce probability distributions that fill intermediate gaps between discrete ice-sheet model outcomes. We invert emulated high and low probability sea-level contributions in 2100 to explore 21st century evolution pathways; results highlight the deep uncertainty of ice-sheet model physics and the importance of using observations to narrow the range of parameters. Our approach is designed to be flexible such that other ice-sheet models or parameter spaces may be substituted and explored with the emulator. 
    more » « less
  4. Abstract Freshwater discharge from ice sheets induces surface atmospheric cooling and subsurface ocean warming, which are associated with negative and positive feedbacks respectively. However, uncertainties persist regarding these feedbacks’ relative strength and combined effect. Here we assess associated feedbacks in a coupled ice sheet-climate model, and show that for the Antarctic Ice Sheet the positive feedback dominates in moderate future warming scenarios and in the early stage of ice sheet retreat, but is overwhelmed by the negative feedback in intensive warming scenarios when the West Antarctic Ice Sheet undergoes catastrophic collapse. The Atlantic Meridional Overturning Circulation is affected by freshwater discharge from both the Greenland and the Antarctic ice sheets and, as an interhemispheric teleconnection bridge, exacerbates the opposing ice sheet’s retreat via the Bipolar Seesaw. These results highlight the crucial role of ice sheet-climate interactions via freshwater flux in future ice sheet retreat and associated sea-level rise. 
    more » « less
  5. Future sea-level rise projections are characterized by both quantifiable uncertainty and unquantifiable structural uncertainty. Thorough scientific assessment of sea-level rise projections requires analysis of both dimensions of uncertainty. Probabilistic sea-level rise projections evaluate the quantifiable dimension of uncertainty; comparison of alternative probabilistic methods provides an indication of structural uncertainty. Here we describe the Framework for Assessing Changes To Sea-level (FACTS), a modular platform for characterizing different probability distributions for the drivers of sea-level change and their consequences for global mean, regional, and extreme sea-level change. We demonstrate its application by generating seven alternative probability distributions under multiple emissions scenarios for both future global mean sea-level change and future relative and extreme sea-level change at New York City. These distributions, closely aligned with those presented in the Intergovernmental Panel on Climate Change Sixth Assessment Report, emphasize the role of the Antarctic and Greenland ice sheets as drivers of structural uncertainty in sea-level change projections. 
    more » « less