We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. \begin{itemize} \item \textbf{Diagonal preconditioning.} We give an algorithm which, given positive definite $$\mathbf{K} \in \mathbb{R}^{d \times d}$$ with $$\mathrm{nnz}(\mathbf{K})$$ nonzero entries, computes an $$\epsilon$$-optimal diagonal preconditioner in time $$\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$$, where $$\kappa^\star$$ is the optimal condition number of the rescaled matrix. \item \textbf{Structured linear systems.} We give an algorithm which, given $$\mathbf{M} \in \mathbb{R}^{d \times d}$$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $$\mathbf{M}$$ in $$\widetilde{O}(d^2)$$ time. \end{itemize} Our diagonal preconditioning results improve state-of-the-art runtimes of $$\Omega(d^{3.5})$$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $$\Omega(d^{\omega})$$ where $$\omega > 2.3$$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call \emph{matrix-dictionary approximation SDPs}, which we leverage to solve an associated problem we call \emph{matrix-dictionary recovery}.
more »
« less
Effectiveness and robustness revisited for a preconditioning technique based on structured incomplete factorization
Summary In this work, we provide new analysis for a preconditioning technique called structured incomplete factorization (SIF) for symmetric positive definite matrices. In this technique, a scaling and compression strategy is applied to construct SIF preconditioners, where off‐diagonal blocks of the original matrix are first scaled and then approximated by low‐rank forms. Some spectral behaviors after applying the preconditioner are shown. The effectiveness is confirmed with the aid of a type of two‐dimensional and three‐dimensional discretized model problems. We further show that previous studies on the robustness are too conservative. In fact, the practical multilevel version of the preconditioner has a robustness enhancement effect, and is unconditionally robust (or breakdown free) for the model problems regardless of the compression accuracy for the scaled off‐diagonal blocks. The studies give new insights into the SIF preconditioning technique and confirm that it is an effective and reliable way for designing structured preconditioners. The studies also provide useful tools for analyzing other structured preconditioners. Various spectral analysis results can be used to characterize other structured algorithms and study more general problems.
more »
« less
- Award ID(s):
- 1819166
- PAR ID:
- 10375901
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Numerical Linear Algebra with Applications
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1070-5325
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose a uniform block-diagonal preconditioner for condensed $$H$$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.more » « less
-
Abstract This work presents an overview of the most relevant results obtained by the authors regarding the numerical solution of the Biot’s consolidation problem by preconditioning techniques. The emphasis here is on the design of parameter-robust preconditioners for the efficient solution of the algebraic system of equations resulting after proper discretization of such poroelastic problems. The classical two- and three-field formulations of the problem are considered, and block preconditioners are presented for some of the discretization schemes that have been proposed by the authors for these formulations. These discretizations have been proved to be well-posed with respect to the physical and discretization parameters, what provides a framework to develop preconditioners that are robust with respect to such parameters as well. In particular, we construct both norm-equivalent (block diagonal) and field-of-value-equivalent (block triangular) preconditioners, which are proved to be parameter-robust. The theoretical results on this parameter-robustness are demonstrated by considering typical benchmark problems in the literature for Biot’s model.more » « less
-
Abstract It is known that the solutions to space‐fractional diffusion equations exhibit singularities near the boundary. Therefore, numerical methods discretized on the composite mesh, in which the mesh size is refined near the boundary, provide more precise approximations to the solutions. However, the coefficient matrices of the corresponding linear systems usually lose the diagonal dominance and are ill‐conditioned, which in turn affect the convergence behavior of the iteration methods.In this work we study a finite volume method for two‐sided fractional diffusion equations, in which a locally refined composite mesh is applied to capture the boundary singularities of the solutions. The diagonal blocks of the resulting three‐by‐three block linear system are proved to be positive‐definite, based on which we propose an efficient block Gauss–Seidel method by decomposing the whole system into three subsystems with those diagonal blocks as the coefficient matrices. To further accelerate the convergence speed of the iteration, we use T. Chan's circulant preconditioner31as the corresponding preconditioners and analyze the preconditioned matrices' spectra. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method and its strong potential in dealing with ill‐conditioned problems. While we have not proved the convergence of the method in theory, the numerical experiments show that the proposed method is convergent.more » « less
-
We devise multigrid preconditioners for linear-quadratic space-time distributed parabolic optimal control problems. While our method is rooted in earlier work on elliptic control, the temporal dimension presents new challenges in terms of algorithm design and quality. Our primary focus is on the cG(s)dG(r) discretizations which are based on functions that are continuous in space and discontinuous in time, but our technique is applicable to various other space-time finite element discretizations. We construct and analyse two kinds of multigrid preconditioners: the first is based on full coarsening in space and time, while the second is based on semi-coarsening in space only. Our analysis, in conjunction with numerical experiments, shows that both preconditioners are of optimal order with respect to the discretization in case of cG(1)dG(r) for r = 0, 1 and exhibit a suboptimal behaviour in time for Crank–Nicolson. We also show that, under certain conditions, the preconditioner using full space-time coarsening is more efficient than the one involving semi-coarsening in space, a phenomenon that has not been observed previously. Our numerical results confirm the theoretical findings.more » « less
An official website of the United States government
