skip to main content


Title: Remote surface optical phonon scattering in ferroelectric Ba0.6Sr0.4TiO3 gated graphene

We report the effect of remote surface optical (RSO) phonon scattering on carrier mobility in monolayer graphene gated by ferroelectric oxide. We fabricate monolayer graphene transistors back-gated by epitaxial (001) Ba0.6Sr0.4TiO3 films, with field effect mobility up to 23 000 cm2 V−1 s−1 achieved. Switching ferroelectric polarization induces nonvolatile modulation of resistance and quantum Hall effect in graphene at low temperatures. Ellipsometry spectroscopy studies reveal four pairs of optical phonon modes in Ba0.6Sr0.4TiO3, from which we extract RSO phonon frequencies. The temperature dependence of resistivity in graphene can be well accounted for by considering the scattering from the intrinsic longitudinal acoustic phonon and the RSO phonon, with the latter dominated by the mode at 35.8 meV. Our study reveals the room temperature mobility limit of ferroelectric-gated graphene transistors imposed by RSO phonon scattering.

 
more » « less
Award ID(s):
1710461 2044049 1808715
NSF-PAR ID:
10375940
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
15
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead‐halide perovskite field‐effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor‐phase epitaxy technique that results in large‐area single‐crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin‐film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap‐free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall‐effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2V−1s−1at room temperature to ≈250 cm2V−1s−1at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon‐limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high‐performance perovskite electronic devices.

     
    more » « less
  2. We report electron transport measurements in dual-gated monolayer WS2 encapsulated in hexagonal boron-nitride. Using gated Ohmic contacts that operate from room temperature down to 1.5 K, we measure the intrinsic conductivity and carrier density as a function of temperature and gate bias. Intrinsic electron mobilities of 100 cm2/(V s) at room temperature and 2000 cm2/(V s) at 1.5 K are achieved. The mobility shows a strong temperature dependence at high temperatures, consistent with phonon scattering dominated carrier transport. At low temperature, the mobility saturates due to impurity and long-range Coulomb scattering. First-principles calculations of phonon scattering in monolayer WS2 are in good agreement with the experimental results, showing we approach the intrinsic limit of transport in these two-dimensional layers.

     
    more » « less
  3. Charge transport in ferroelectric (FE) gated graphene far from the Dirac point (DP) was studied in the temperature range 300 K < T < 350 K. A non-monotonic/monotonic/non-monotonic behavior in the conductivity [σ(T)] was observed as one moved away from the DP. As the gate polarization increased, additional impurity charges were compensated, which reduced charge scattering. The uncompensated charges doped graphene and σ(T) switched to a monotonic increase with increasing T. However, far from the DP, the polarization reached saturation, which resulted in still lower impurity charge scattering. The carrier concentration increased, and a non-monotonic response in σ(T) reappeared, which was attributed to phonon scattering. A theoretical model is presented that combined impurity charge and phonon scattering conduction mechanisms. The top gate polarizable FE provided a novel approach to investigate charge transport in graphene via controlled compensation of impurity charges, and in the process revealed non-monotonic behavior in σ(T) not previously seen in SiO 2 back gated graphene devices. 
    more » « less
  4. Abstract

    The superior size and power scaling potential of ferroelectric-gated Mott transistors makes them promising building blocks for developing energy-efficient memory and logic applications in the post-Moore’s Law era. The close to metallic carrier density in the Mott channel, however, imposes the bottleneck for achieving substantial field effect modulation via a solid-state gate. Previous studies have focused on optimizing the thickness, charge mobility, and carrier density of single-layer correlated channels, which have only led to moderate resistance switching at room temperature. Here, we report a record high nonvolatile resistance switching ratio of 38,440% at 300 K in a prototype Mott transistor consisting of a ferroelectric PbZr0.2Ti0.8O3gate and anRNiO3(R: rare earth)/La0.67Sr0.33MnO3composite channel. The ultrathin La0.67Sr0.33MnO3buffer layer not only tailors the carrier density profile inRNiO3through interfacial charge transfer, as corroborated by first-principles calculations, but also provides an extended screening layer that reduces the depolarization effect in the ferroelectric gate. Our study points to an effective material strategy for the functional design of complex oxide heterointerfaces that harnesses the competing roles of charge in field effect screening and ferroelectric depolarization effects.

     
    more » « less
  5. Abstract

    Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Finally, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstrated the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.

     
    more » « less