skip to main content


Title: SPASCER: spatial transcriptomics annotation at single-cell resolution
Abstract

In recent years, the explosive growth of spatial technologies has enabled the characterization of spatial heterogeneity of tissue architectures. Compared to traditional sequencing, spatial transcriptomics reserves the spatial information of each captured location and provides novel insights into diverse spatially related biological contexts. Even though two spatial transcriptomics databases exist, they provide limited analytical information. Information such as spatial heterogeneity of genes and cells, cell-cell communication activities in space, and the cell type compositions in the microenvironment are critical clues to unveil the mechanism of tumorigenesis and embryo differentiation. Therefore, we constructed a new spatial transcriptomics database, named SPASCER (https://ccsm.uth.edu/SPASCER), designed to help understand the heterogeneity of tissue organizations, region-specific microenvironment, and intercellular interactions across tissue architectures at multiple levels. SPASCER contains datasets from 43 studies, including 1082 sub-datasets from 16 organ types across four species. scRNA-seq was integrated to deconvolve/map spatial transcriptomics, and processed with spatial cell-cell interaction, gene pattern and pathway enrichment analysis. Cell–cell interactions and gene regulation network of scRNA-seq from matched spatial transcriptomics were performed as well. The application of SPASCER will provide new insights into tissue architecture and a solid foundation for the mechanistic understanding of many biological processes in healthy and diseased tissues.

 
more » « less
NSF-PAR ID:
10375949
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
51
Issue:
D1
ISSN:
0305-1048
Page Range / eLocation ID:
p. D1138-D1149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A prominent trend in single-cell transcriptomics is providing spatial context alongside a characterization of each cell’s molecular state. This typically requires targeting an a priori selection of genes, often covering less than 1% of the genome, and a key question is how to optimally determine the small gene panel. We address this challenge by introducing a flexible deep learning framework, PERSIST, to identify informative gene targets for spatial transcriptomics studies by leveraging reference scRNA-seq data. Using datasets spanning different brain regions, species, and scRNA-seq technologies, we show that PERSIST reliably identifies panels that provide more accurate prediction of the genome-wide expression profile, thereby capturing more information with fewer genes. PERSIST can be adapted to specific biological goals, and we demonstrate that PERSIST’s binarization of gene expression levels enables models trained on scRNA-seq data to generalize with to spatial transcriptomics data, despite the complex shift between these technologies.

     
    more » « less
  2. The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network–based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group–specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell–tissue and cell–cell metabolic communications. 
    more » « less
  3. Abstract

    Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell–cell communications are then obtained by “optimally transporting” signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene–gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell–cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues.

     
    more » « less
  4. Abstract Background

    Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis.

    Results

    We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance.

    Conclusions

    iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.

     
    more » « less
  5. Birol, Inanc (Ed.)
    Abstract Motivation

    Single-cell RNA sequencing (scRNA-seq) is widely used for analyzing gene expression in multi-cellular systems and provides unprecedented access to cellular heterogeneity. scRNA-seq experiments aim to identify and quantify all cell types present in a sample. Measured single-cell transcriptomes are grouped by similarity and the resulting clusters are mapped to cell types based on cluster-specific gene expression patterns. While the process of generating clusters has become largely automated, annotation remains a laborious ad hoc effort that requires expert biological knowledge.

    Results

    Here, we introduce CellMeSH—a new automated approach to identifying cell types for clusters based on prior literature. CellMeSH combines a database of gene–cell-type associations with a probabilistic method for database querying. The database is constructed by automatically linking gene and cell-type information from millions of publications using existing indexed literature resources. Compared to manually constructed databases, CellMeSH is more comprehensive and is easily updated with new data. The probabilistic query method enables reliable information retrieval even though the gene–cell-type associations extracted from the literature are noisy. CellMeSH is also able to optionally utilize prior knowledge about tissues or cells for further annotation improvement. CellMeSH achieves top-one and top-three accuracies on a number of mouse and human datasets that are consistently better than existing approaches.

    Availability and implementation

    Web server at https://uncurl.cs.washington.edu/db_query and API at https://github.com/shunfumao/cellmesh.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less