The climatology of earth's Na density over Fort Collins, CO (41°N, 105°W) based on nocturnal Na lidar observations between 1990 and 1999 was reported by She et al. (2000,
The lunar surface is constantly bombarded by the solar wind, photons, and meteoroids, which can liberate Na atoms from the regolith. These atoms are subsequently accelerated by solar photon pressure to form a long comet‐like tail opposite the sun. Near new moon, these atoms encounter the Earth's gravity and are “focused” into a beam of enhanced density. This beam appears as the ∼3° diameter Sodium Moon Spot (SMS). Data from the all sky imager at the El Leoncito Observatory have been analyzed for changes in the SMS shape and brightness. New geometry‐based relationships have been found that affect the SMS brightness. The SMS is brighter when the Moon is north of the ecliptic at new moon; the SMS is brighter when new moon occurs near perigee; and the SMS peaks in brightness ∼5 h after new moon. After removing these effects, the data were analyzed for long term and seasonal patterns that could be attributed to changes in source mechanisms. No correlation was found between the SMS brightness and the 11‐year solar‐cycle, the proton or the He++flow pressure, the density, the speed or the plasma temperature of the solar wind, but an annual pattern was found. A ∼0.83 correlation (Pearson's “
- Award ID(s):
- 1659304
- NSF-PAR ID:
- 10376009
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Planets
- Volume:
- 126
- Issue:
- 3
- ISSN:
- 2169-9097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/2000gl003825 ). Based on a continued 28‐year data set between 1990 and 2017 with the latter part observed over Logan, UT (42N, 112W), we update the seasonal variations between 80 and 110 km. This data set is also used to deduce long‐term responses of Na density (profile) between 75 and 110 km, showing a positive linear trend between 75 and 93 km (with maximum ∼2.87 × 108 m−3/decade at 87 km); it turns negative before approaching zero at 110 km (with minimum ∼−2.96 × 107 m−3/decade at 100 km). The associated solar response is also positive for the altitude range in question (with maximum ∼5.20 × 106 m−3/SFU at 91 km). We also derived the 28‐year mean Na layer column abundance, centroid altitude, and root mean square width to be 3.92 ± 2.14 1013 m−2, 91.3 ± 1.0 km, and 4.62 ± 0.56 km, respectively, and deduced long‐term trend and solar cycle responses of column abundance and centroid altitude, respectively to be 7.81 ± 1.63%/decade and 16.9 ± 2.8%/100SFU, and −355 ± 35 m/decade and −1.94 ± 0.69 m/SFU. We explained conceptually how positive long‐term responses in Na density led to positive responses in column abundance and negative responses in centroid altitude. -
Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $\sim47~\text{au}$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock.more » « less
-
Abstract The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 R
E subsolar location. -
Abstract An important discovery of MESSENGER is the occurrence of dayside disappearing magnetosphere (DDM) events that occur when the solar wind dynamic pressure is extremely high and the interplanetary magnetic field (IMF) is both intense and southward. In this study, we investigate the DDM events at Mercury under extreme solar wind conditions using a three‐dimensional (3‐D) global hybrid simulation model. Our results show that when the solar wind dynamic pressure is 107 nPa and the magnitude of the purely southward IMF is 50 nT, most of the dayside magnetosphere disappears within 10 s after the interaction between the solar wind and the planetary magnetic field starts. During the DDM event, the ion flux is significantly enhanced at most of the planetary dayside surface and reaches its maximum value of about 1010 cm−2 s−1at the low‐latitude surface, which is much larger than that under normal solar wind conditions. During the DDM events, the dayside bow shock mostly disappears for about 9 s and then reappears. Moreover, the time evolution of magnetopause standoff distance under different solar wind conditions is also studied. When the solar wind dynamic pressure exceeds 25 nPa and the IMF is purely southward, a part of the dayside magnetosphere disappears. Under the same IMF, the higher the solar wind dynamic pressure, the faster the magnetopause standoff distance reaches the planetary surface. When the solar wind conditions are normal (with a dynamic pressure of 8 nPa) or the IMF is purely northward, the dayside magnetosphere does not disappear. The results provide a clear physical image of DDM events from a 3‐D perspective.
-
Abstract We analyzed high accuracy time delays of laser signals sent from the Earth to the retroreflector arrays on the Moon in conjunction with several other sets of solar‐system astrometric data. Using especially the lunar laser ranging data obtained from the Apache Point Observatory telescope site in New Mexico and the Apollo 11 and Apollo 14 retroreflectors on the Moon, we have set a bound on their relative motion along the connecting great circle of 4 mm/yr over a 14‐year period.