ABSTRACT The time evolution of angular momentum and surface rotation of massive stars are strongly influenced by fossil magnetic fields via magnetic braking. We present a new module containing a simple, comprehensive implementation of such a field at the surface of a massive star within the Modules for Experiments in Stellar Astrophysics (mesa) software instrument. We test two limiting scenarios for magnetic braking: distributing the angular momentum loss throughout the star in the first case, and restricting the angular momentum loss to a surface reservoir in the second case. We perform a systematic investigation of the rotational evolution using a grid of OB star models with surface magnetic fields (M⋆ = 5–60 M⊙, Ω/Ωcrit = 0.2–1.0, Bp = 1–20 kG). We then employ a representative grid of B-type star models (M⋆ = 5, 10, 15 M⊙, Ω/Ωcrit = 0.2, 0.5, 0.8, Bp = 1, 3, 10, 30 kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B-type stars. We infer that magnetic massive stars arrive at the zero-age main sequence (ZAMS) with a range of rotation rates, rather than with one common value. In particular, some stars are required to have close-to-critical rotation at the ZAMS. However, magnetic braking yields surface rotation rates converging to a common low value, making it difficult to infer the initial rotation rates of evolved, slowly rotating stars. 
                        more » 
                        « less   
                    
                            
                            The effects of surface fossil magnetic fields on massive star evolution: IV. Grids of models at Solar, LMC, and SMC metallicities
                        
                    
    
            ABSTRACT Magnetic fields can drastically change predictions of evolutionary models of massive stars via mass-loss quenching, magnetic braking, and efficient angular momentum transport, which we aim to quantify in this work. We use the mesa software instrument to compute an extensive main-sequence grid of stellar structure and evolution models, as well as isochrones, accounting for the effects attributed to a surface fossil magnetic field. The grid is densely populated in initial mass (3–60 M⊙), surface equatorial magnetic field strength (0–50 kG), and metallicity (representative of the Solar neighbourhood and the Magellanic Clouds). We use two magnetic braking and two chemical mixing schemes and compare the model predictions for slowly rotating, nitrogen-enriched (‘Group 2’) stars with observations in the Large Magellanic Cloud. We quantify a range of initial field strengths that allow for producing Group 2 stars and find that typical values (up to a few kG) lead to solutions. Between the subgrids, we find notable departures in surface abundances and evolutionary paths. In our magnetic models, chemical mixing is always less efficient compared to non-magnetic models due to the rapid spin-down. We identify that quasi-chemically homogeneous main sequence evolution by efficient mixing could be prevented by fossil magnetic fields. We recommend comparing this grid of evolutionary models with spectropolarimetric and spectroscopic observations with the goals of (i) revisiting the derived stellar parameters of known magnetic stars, and (ii) observationally constraining the uncertain magnetic braking and chemical mixing schemes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927130
- PAR ID:
- 10376053
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2028-2055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Despite a growing sample of precisely measured stellar rotation periods and ages, the strength of magnetic braking and the degree of departure from standard (Skumanich-like) spin-down have remained persistent questions, particularly for stars more evolved than the Sun. Rotation periods can be measured for stars older than the Sun by leveraging asteroseismology, enabling models to be tested against a larger sample of old field stars. Because asteroseismic measurements of rotation do not depend on starspot modulation, they avoid potential biases introduced by the need for a stellar dynamo to drive starspot production. Using a neural network trained on a grid of stellar evolution models and a hierarchical model-fitting approach, we constrain the onset of weakened magnetic braking (WMB). We find that a sample of stars with asteroseismically measured rotation periods and ages is consistent with models that depart from standard spin-down prior to reaching the evolutionary stage of the Sun. We test our approach using neural networks trained on model grids produced by separate stellar evolution codes with differing physical assumptions and find that the choices of grid physics can influence the inferred properties of the braking law. We identify the normalized critical Rossby number Rocrit/Ro⊙= 0.91 ± 0.03 as the threshold for the departure from standard rotational evolution. This suggests that WMB poses challenges to gyrochronology for roughly half of the main-sequence lifetime of Sun-like stars.more » « less
- 
            Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo.more » « less
- 
            The evolution of magnetic braking and dynamo processes in subgiant stars is essential for understanding how these stars lose angular momentum. In this work, we investigate the magnetic braking and dynamo evolution of the G-type subgiant β Hyi to test the hypothesis of weakened magnetic braking and the potential rejuvenation of large-scale magnetic fields. We analyzed spectropolarimetric observations from the polarimetric mode of High Accuracy Radial velocity Planet Searcher (HARPSpol) and combined them with archival X-ray data and asteroseismic properties from Transiting Exoplanet Survey Satellite (TESS) to estimate the current wind-braking torque of β Hyi. Despite experiencing weakened magnetic braking during the second half of its main-sequence lifetime, our results indicate that β Hyi has regained significant magnetic activity and a large-scale magnetic field. This observation aligns with the “born-again” dynamo hypothesis. Furthermore, our estimated wind braking torque is considerably stronger than what would be expected for a star in the weakened magnetic braking regime. This suggests that subgiants with extended convective zones can temporarily re-establish large-scale dynamo action. These results provide critical constraints on stellar rotation models and improve our understanding of the interplay between magnetic field structure, stellar activity cycles, and angular momentum evolution in old solar-type stars.more » « less
- 
            null (Ed.)During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level, and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this mid-life transition in solar-type stars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
