skip to main content


Title: Thermospheric Density Perturbations Produced by Traveling Atmospheric Disturbances During August 2005 Storm
Abstract

Thermospheric mass density perturbations are commonly observed during geomagnetic storms and fundamental to upper atmosphere dynamics, but the sources of these perturbations are not well understood. Large neutral density perturbations during storms greatly affect the drag experienced by low Earth orbit. We investigated the thermospheric density perturbations at all latitudes observed along the CHAMP and GRACE satellite trajectories during the August 24–25, 2005 geomagnetic storm. Observations show that large neutral density enhancements occurred not only at high latitudes, but also globally. Large density perturbations were seen in the equatorial regions away from the high‐latitude, magnetospheric energy sources. We used the high‐resolution Multiscale Atmosphere Geospace Environment (MAGE) model to simulate consecutive neutral density changes observed by satellites during the storm. The MAGE simulation, which resolved mesoscale high‐latitude convection electric fields and field‐aligned currents, and included physics‐based specification of auroral precipitation, was contrasted with a standalone ionosphere‐thermosphere simulation driven by a high‐latitude electrodynamics empirical model. The comparison demonstrates that first‐principles representations of highly dynamic and localized Joule heating events in a fully coupled whole geospace model is critical to accurately capture both generation and propagation of traveling atmospheric disturbances (TADs) that produce neutral density perturbations globally. The MAGE simulation shows that larger density peaks in the equatorial region observed by CHAMP and GRACE are the result of TADs generated at high‐latitudes in both hemispheres, and intersect at low‐latitudes. This study reveals the importance of investigating thermospheric density variations at all latitudes in a fully coupled geospace model with sufficiently high resolving power.

 
more » « less
NSF-PAR ID:
10376055
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
2
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time.

     
    more » « less
  2. Abstract

    The geomagnetic storm on February 3, 2022 caused the loss of 38 Starlink satellites of Space‐X. The Global‐scale Observations of the Limb and Disk (GOLD) observations and Multi‐Scale Atmosphere Geospace Environment (MAGE) model simulations are utilized to investigate the thermospheric composition responses to the Space‐X storm. The percentage difference of the GOLD observed thermospheric O and N2column density ratio (∑O/N2) between the storm time (February 3, Day‐of‐Year [DOY] 34) and quiet time (DOY 32) shows a depletion region in the local noon sector mid‐high latitudes in the southern hemisphere, which corresponds to the east side of GOLD field‐of‐view (FOV). This is different from the classic theory of thermospheric composition disturbance during geomagnetic storms, under which the ∑O/N2depletion is usually generated at local midnight and high latitudes, and thus, appear on the west side of GOLD FOV. MAGE simulations reproduce the observations qualitatively and indicate that the ∑O/N2depletion is formed due to strong upwelling in the local morning caused by strong Joule heating. Interestingly, enhanced equatorward winds appear near local midnight, but also in the local morning sector, which transports ∑O/N2depletion equatorward. The depletion corotates toward the local afternoon and is observed in the GOLD FOV. The equatorward winds in the local morning are due to the ion‐neutral coupling under the conditions of a dominant positive interplanetary magnetic field east‐west component (By) during the storm.

     
    more » « less
  3. Abstract

    We present results from a study of the time lags between changes in the energy flow into the polar regions and the response of the thermosphere to the heating. Measurements of the neutral density from the Challenging Mini‐satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) missions are used, along with calculations of the total Poynting flux entering the poles. During two major geomagnetic storms in 2003, these data show increased densities are first seen on the dayside edge of the auroral ovals after a surge in the energy input. At lower latitudes, the densities reach their peak values on the dayside earlier than on the night side. A puzzling response seen in the CHAMP measurements during the November 2003 storm was that the density at a fixed location near the “Harang discontinuity” remained at unusually low levels during three sequential orbit passes, while elsewhere the density increased. The entire database of measurements from the CHAMP and GRACE missions were used to derive maps of the density time lags across the globe. The maps show a large gradient between short and long time delays between 60° and 30° geographic latitude. They confirm the findings from the two storm periods, that near the equator, the density on the dayside responds earlier than on the nightside. The time lags are longest near 18–20 hr local time. The time lag maps could be applied to improve the accuracy of empirical thermosphere models, and developers of numerical models may find these results useful for comparisons with their calculations.

     
    more » « less
  4. During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in e.g., the dynamics, composition, and neutral density. The more steady energy from the lower atmosphere into the IT system is in general much smaller than the energy input from the magnetosphere, especially during geomagnetic storms, and therefore details of the lower atmosphere forcing are often neglected in storm time simulations. In this study we compare the neutral density observed by Swarm-C during the moderate geomagnetic storm of 31 January to 3 February 2016 with the Thermosphere-Ionosphere-Electrodynamics-GCM (TIEGCM) finding that the model can capture the observed large scale neutral density variations better in the southern than northern hemisphere. The importance of more realistic lower atmospheric (LB) variations as specified by the Whole Atmosphere Community Climate Model eXtended (WACCM-X) with specified dynamics (SD) is demonstrated by improving especially the northern hemisphere neutral density by up to 15% compared to using climatological LB forcing. Further analysis highlights the importance of the background atmospheric condition in facilitating hemispheric different neutral density changes in response to the LB perturbations. In comparison, employing observationally based field-aligned current (FAC) versus using an empirical model to describe magnetosphere-ionosphere (MI) coupling leads to an 7–20% improved northern hemisphere neutral density. The results highlight the importance of the lower atmospheric variations and high latitude forcing in simulating the absolute large scale neutral density especially the hemispheric differences. However, focusing on the storm time variation with respect to the quiescent time, the lower atmospheric influence is reduced to 1–1.5% improvement with respect to the total observed neutral density. The results provide some guidance on the importance of more realistic upper boundary forcing and lower atmospheric variations when modeling large scale, absolute and relative neutral density variations. 
    more » « less
  5. Abstract

    The ratio of O to N2number densities (O/N2) at different altitudes is an important parameter in describing thermospheric neutral composition changes and their effects on the ionosphere during geomagnetic storms. However, storm‐induced vertical variations in O/N2and its dependence on the O and N2perturbations are still not fully understood. Here, the Thermosphere/Ionosphere Electrodynamics General Circulation Model simulations were used to investigate the responses of thermospheric composition at different pressure levels to the super geomagnetic storm occurred on November 20 and 21 in 2003. Our analysis shows that the behaviors of O/N2perturbations on different pressure levels are similar above ∼180 km altitude. In the middle and low thermosphere of below ∼300 km, the storm‐time O/N2decrease is mainly caused by a large reduction of O number density. However, N2enhancement plays a vital role in O/N2decreases in the upper thermosphere. The O/N2enhancement is mainly attributed to the N2decreases at all pressure levels. The changes of O and N2number densities at a constant pressure level can be explained by the perturbations of their mass mixing ratio (mmr) and total mass density (ρ). The regions of the O/N2decrease are characterized by the O mmr decrease and N2mmr enhancement, whereas the regions of the O/N2increase are characterized by the O mmr increase and N2mmr decrease. Theρvalue that shows the decrease globally at most pressure levels during the storm either enhance or reduce the O and N2perturbations.

     
    more » « less