skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aufeis fields as novel groundwater‐dependent ecosystems in the arctic cryosphere
Abstract Riveraufeis(ow′ fīse) are widespread features of the arctic cryosphere. They form when river channels become locally restricted by ice, resulting in cycles of water overflow and freezing and the accumulation of ice, with someaufeisattaining areas of ~ 25 + km2and thicknesses of 6+ m. During winter, unfrozen sediments beneath the insulating ice layer provide perennial groundwater‐habitat that is otherwise restricted in regions of continuous permafrost. Our goal was to assess whetheraufeisfacilitate the occurrence of groundwater invertebrate communities in the Arctic. We focused on a singleaufeisecosystem (~ 5 km2by late winter) along the Kuparuk River in arctic Alaska. Subsurface invertebrates were sampled during June and August 2017 from 50 3.5‐cm diameter PVC wells arranged in a 5 × 10 array covering ~ 40 ha. Surface invertebrates were sampled using a quadrat approach. We documented a rich assemblage of groundwater invertebrates (49 [43–54] taxa,[95% confidence limits]) that was distributed below the sediment surface to a mean depth of ~ 69 ± 2 cm (± 1 SE) throughout the entire well array. Although community structure differed significantly between groundwater and surface habitats, the taxa richness from wells and surface sediments (43 [35–48] taxa) did not differ significantly, which was surprising given lower richness in subsurface habitats of large, riverine gravel‐aquifer systems shown elsewhere. This is the first demonstration of a rich and spatially extensive groundwater fauna in a region of continuous permafrost. Given the geographic extent ofaufeisfields, localized groundwater‐dependent ecosystems may be widespread in the Arctic.  more » « less
Award ID(s):
1637459
PAR ID:
10376162
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
3
ISSN:
0024-3590
Page Range / eLocation ID:
p. 607-624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records. 
    more » « less
  2. Abstract Characterizing spatial and temporal variability of food web dynamics is necessary to predict how wetter and more nutrient‐rich conditions expected with climate change will influence the fate of organic matter within northern peatlands. The goals of this study were to (1) document spatial and temporal variability in the contribution of periphyton to peatland food webs using isotope analysis (13C and15N), and (2) quantify the influence of increased nutrient availability on primary and secondary production across a gradient of rich, moderate, and poor fen peatlands common to the northern boreal biome. We established replicatem2plots within each fen located in interior Alaska to quantify periphyton (algae and bacteria) and macroinvertebrate biomass with and without nutrient addition throughout a growing season (May–August). Stable isotope analysis showed that periphyton contributed= 65% of organic matter to the food web over time and across fens compared to= 7% from plants or detritus. The transfer of basal resources was reflected in an increase in herbivore biomass as algal biomass increased over time in all fens, followed by an increase in predatory macroinvertebrates during the latter part of the growing season. Furthermore, all measures of periphyton and macroinvertebrate biomass were enhanced by nutrient addition. These data provide insight into patterns of natural variation within the aquatic food web of boreal peatlands and show that basal resources within this ecosystem, which are generally considered to be “detritus‐based,” are actually driven by periphyton with minimal input from plant detrital pathways. 
    more » « less
  3. Abstract Following sea‐ice retreat, surface waters of Arctic marginal seas become nutrient‐limited and subsurface chlorophyll maxima (SCM) develop below the pycnocline where nutrients and light conditions are favorable. However, the importance of these “hidden” features for regional productivity is not well constrained. Here, we use a unique combination of high‐resolution biogeochemical and physical observations collected on the Chukchi shelf in 2017 to constrain the fine‐scale structure of nutrients, O2, particles, SCM, and turbulence. We find large O2excess at middepth, identified by positive saturation () maxima of 15%–20% that unambiguously indicate significant production occurring in middepth waters. Themaxima coincided with a complete depletion of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+). Nitracline depths aligned with SCM depths and the lowest extent ofmaxima, suggesting this horizon represents a compensation point for balanced growth and loss. Furthermore, SCM were also associated with turbulence minima and sat just above a high turbidity bottom layer where light attenuation increased significantly. Spatially, the largestmaxima were associated with high nutrient winter‐origin water masses (14.8% ± 2.4%), under a shallower pycnocline associated with seasonal melt while lower values were associated with summer‐origin water masses (7.4% ± 3.9%). Integrated O2excesses of 800–1,200 mmol m−2in regions overlying winter water are consistent with primary production rates that are 12%–40% of previously reported regional primary production. These data implicate short‐term and long‐term control of SCM and associated productivity by stratification, turbulence, light, and seasonal water mass formation, with corresponding potential for climate‐related sensitivities. 
    more » « less
  4. Abstract Estimates of turbulence kinetic energy (TKE) dissipation rate (ε) are key in understanding how heat, gas, and other climate‐relevant properties are transferred across the air‐sea interface and mixed within the ocean. A relatively new method involving moored pulse‐coherent acoustic Doppler current profilers (ADCPs) allows for estimates ofεwith concurrent surface flux and wave measurements across an extensive length of time and range of conditions. Here, we present 9 months of moored estimates ofεat a fixed depth of 8.4 m at the Stratus mooring site (20°S, 85°W). We find that turbulence regimes are quantified similarly using the Obukhov length scaleand the newer Langmuir stability length scale, suggesting that ocean‐side friction velocityimplicitly captures the influence of Langmuir turbulence at this site. This is illustrated by a strong correlation between surface Stokes driftandthat is likely facilitated by the steady Southeast trade winds regime. In certain regimes,, whereis the von Kármán constant andis instrument depth, and surface buoyancy flux capture our estimates ofwell, collapsing data points near unity. We find that a newer Langmuir turbulence scaling, based onand, scalesεwell at times but is overall less consistent than. Monin‐Obukhov similarity theory (MOST) relationships from prior studies in a variety of aquatic and atmospheric settings largely agree with our data in conditions where convection and wind‐driven current shear are both significant sources of TKE, but diverge in other regimes. 
    more » « less
  5. Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions. 
    more » « less