skip to main content


Title: Leaf and root phenology and biomass of Eriophorum vaginatum in response to warming in the Arctic
Abstract

The response of plant leaf and root phenology and biomass in the Arctic to global change remains unclear due to the lack of synchronous measurements of above- and belowground parts. Our objective was to determine the phenological dynamics of the above- and belowground parts of Eriophorum vaginatum in the Arctic and its response to warming. We established a common garden located at Toolik Lake Field Station; tussocks of E. vaginatum from three locations, Coldfoot, Toolik Lake and Sagwon, were transplanted into the common garden. Control and warming treatments for E. vaginatum were set up at the Toolik Lake during the growing seasons of 2016 and 2017. Digital cameras, a handheld sensor and minirhizotrons were used to simultaneously observe leaf greenness, normalized difference vegetation index and root length dynamics, respectively. Leaf and root growth rates of E. vaginatum were asynchronous such that the timing of maximal leaf growth (mid-July) was about 28 days earlier than that of root growth. Warming of air temperature by 1 °C delayed the timing of leaf senescence and thus prolonged the growing season, but the temperature increase had no significant effect on root phenology. The seasonal dynamics of leaf biomass were affected by air temperature, whereas root biomass was correlated with soil thaw depth. Therefore, we suggest that leaf and root components should be considered comprehensively when using carbon and nutrient cycle models, as above- and belowground productivity and functional traits may have a different response to climate warming.

 
more » « less
Award ID(s):
2220863
NSF-PAR ID:
10376200
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Plant Ecology
Volume:
15
Issue:
5
ISSN:
1752-993X
Format(s):
Medium: X Size: p. 1091-1105
Size(s):
["p. 1091-1105"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The phenology of Arctic plants is an important determinant of the pattern of carbon uptake and may be highly sensitive to continued rapid climate change. Eriophorum vaginatum L. (Cyperaceae) has a disproportionate influence over ecosystem processes in moist acidic tundra, but it is unclear whether its growth and phenology will remain competitive in the future. We investigated whether northern tundra ecotypes of E. vaginatum could extend their growing season in response to direct warming and transplanting into southern ecosystems. At the same time, we examined whether southern ecotypes could adjust their growth patterns in order to thrive further north, should they disperse quickly enough. Detailed phenology measurements across three reciprocal transplant gardens over a 2-year period showed that some northern ecotypes were capable of growing for longer when conditions were favourable, but their biomass and growing season length was still shorter than those of the southern ecotype. Southern ecotypes retained large leaf length when transplanted north and mirrored the growing season length better than the others, mainly owing to immediate green-up after snowmelt. All ecotypes retained the same senescence timing, regardless of environment, indicating a strong genetic control. Eriophorum vaginatum may remain competitive in a warming world if southern ecotypes can migrate north. 
    more » « less
  2. Abstract

    Rapid Arctic climate change is leading to woody plant‐dominated ecosystems with potential consequences for caribou foraging and nutritional ecology. While warming has been clearly linked to shrub expansion, the influence of higher temperatures on variables linked to the leaf‐level quality of caribou forage is equivocal. Moreover, warming results in a complex set of ecosystem changes that operate on different timescales such as not only rapidly accelerating phenology, but also slowly increasing thaw depth and plant access to soil resources. Here, we compare changes in leaf nitrogen (N) concentration, digestibility, and protein‐precipitating capacity (PPC) in short‐term (i.e., <1–2 summers) and long‐term (approximately 25 years) experimental warming plots with ambient temperature plots for three species commonly included in caribou summer diets:Salix pulchra(diamond‐leaf willow),Betula nana(dwarf birch), andEriophorum vaginatum(cottongrass). Short‐term warming modestly decreased leaf N concentration inB. nana.Long‐term and short‐term warming slightly increased the digestibility ofS. pulchra, but only short‐term warming increased digestibility inB. nana. Greater dry matter digestibility in both shrubs occurred through reductions in the lignin and cutin quantity in plant cells. Long‐term warming had no impact on PPC and equivocal impact on digestible protein ofB. nana. Overall, we found short‐term warming to be more impactful on forage quality than long‐term warming at Toolik Lake, Alaska. Apart from a long‐term warming reduction of approximately 13% in acid detergent lignin inS. pulchraandB. nana, other differences were only observed in the short‐term warming plots. Hence, our results indicate acclimation of plants to long‐term warming or possible negative feedback in the system to reduce warming effects. We suggest that warming summers may have a lesser effect on caribou forage than changes in winter precipitation or the influence of climate change on the abundance of critical species in the caribou diet.

     
    more » « less
  3. Abstract

    Dramatic increases in air temperature and precipitation are occurring in the High Arctic (>70°N), yet few studies have characterized the long‐term responses of High Arctic ecosystems to the interactive effects of experimental warming and increased rain. Beginning in 2003, we applied a factorial summer warming and wetting experiment to a polar semidesert in northwest Greenland. In summer 2018, we assessed several metrics of ecosystem structure and function, including plant cover, greenness, ecosystem CO2exchange, aboveground (leaf, stem) and belowground (litter, root, soil) carbon (C) and nitrogen (N) concentrations (%) and pools, as well as leaf and soil stable isotopes (δ13C and δ15N). Wetting induced the most pronounced changes in ecosystem structure, accelerating the expansion ofSalix arcticacover by 370% and increasing aboveground C, N, and biomass pools by 94%–101% and root C, N, and biomass pools by 60%–122%, increases which coincided with enhanced net ecosystem CO2uptake. Further, wetting combined with warming enhanced plot‐level greenness, whereas in isolation neither wetting nor warming had an effect. At the plant level, the effects of warming and wetting differed among species and included warming‐linked decreases in leaf N and δ15N inS. arctica, whereas leaf N and δ15N inDryas integrifoliadid not respond to the climate treatments. Finally, neither plant‐ nor plot‐level C and N allocation patterns nor soil C, N, δ13C, or δ15N concentrations changed in response to our manipulations, indicating that these ecosystem metrics may resist climate change, even in the longer term. In sum, our results highlight the importance of summer precipitation in regulating ecosystem structure and function in arid parts of the High Arctic, but they do not completely refute previous findings of resistance in some High Arctic ecosystem properties to climate change.

     
    more » « less
  4. Abstract

    In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open‐top chamber warming treatment over a 3‐year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010–2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early‐season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1‐ to 2‐week changes in timing of snowmelt alone are not enough to drive season‐long changes in soil microbial and nutrient cycling processes.

     
    more » « less
  5. Abstract

    Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground.

     
    more » « less