skip to main content

Title: Search and identification of transient and variable radio sources using MeerKAT observations: a case study on the MAXI J1820+070 field

Many transient and variable sources detected at multiple wavelengths are also observed to vary at radio frequencies. However, these samples are typically biased towards sources that are initially detected in wide-field optical, X-ray, or gamma-ray surveys. Many sources that are insufficiently bright at higher frequencies are therefore missed, leading to potential gaps in our knowledge of these sources and missing populations that are not detectable in optical, X-rays, or gamma-rays. Taking advantage of new state-of-the-art radio facilities that provide high-quality wide-field images with fast survey speeds, we can now conduct unbiased surveys for transient and variable sources at radio frequencies. In this paper, we present an unbiased survey using observations obtained by MeerKAT, a mid-frequency (∼GHz) radio array in South Africa’s Karoo Desert. The observations used were obtained as part of a weekly monitoring campaign for X-ray binaries (XRBs) and we focus on the field of MAXI J1820+070. We develop methods to efficiently filter transient and variable candidates that can be directly applied to other data sets. In addition to MAXI J1820+070, we identify four likely active galactic nuclei, one source that could be a Galactic source (pulsar or quiescent XRB) or an AGN, and one variable pulsar. No more » transient sources, defined as being undetected in deep images, were identified leading to a transient surface density of <3.7 × 10−2 deg−2 at a sensitivity of 1 mJy on time-scales of 1 week at 1.4 GHz.

« less
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 2894-2911
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    We present the results of a radio transient and polarization survey towards the Galactic Centre, conducted as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients pilot survey. The survey region consisted of five fields covering $\sim 265\, {\rm deg}^2$ (350○ ≲ l ≲ 10○, |b| ≲ 10○). Each field was observed for 12 min, with between 7 and 9 repeats on cadences of between one day and four months. We detected eight highly variable sources and seven highly circularly polarized sources (14 unique sources in total). Seven of these sources are known pulsars including the rotating radio transient PSR J1739–2521 and the eclipsing pulsar PSR J1723–2837. One of them is a low-mass X-ray binary, 4U 1758–25. Three of them are coincident with optical or infrared sources and are likely to be stars. The remaining three may be related to the class of Galactic Centre Radio Transients (including a highly likely one, VAST J173608.2–321634, that has been reported previously), although this class is not yet understood. In the coming years, we expect to detect ∼40 bursts from this kind of source with the proposed 4-yr VAST survey if the distribution of the source is isotropic over the Galactic fields.

  2. ABSTRACT Infrared interferometry is a new frontier for precision ground-based observing, with new instrumentation achieving milliarcsecond (mas) spatial resolutions for faint sources, along with astrometry on the order of 10 microarcseconds (μas). This technique has already led to breakthroughs in the observations of the supermassive black hole at the Galactic centre and its orbiting stars, active galactic nucleus, and exo-planets, and can be employed for studying X-ray binaries (XRBs), microquasars in particular. Beyond constraining the orbital parameters of the system using the centroid wobble and spatially resolving jet discrete ejections on mas scales, we also propose a novel method to discern between the various components contributing to the infrared bands: accretion disc, jets, and companion star. We demonstrate that the GRAVITY instrument on the Very Large Telescope Interferometer should be able to detect a centroid shift in a number of sources, opening a new avenue of exploration for the myriad of transients expected to be discovered in the coming decade of radio all-sky surveys. We also present the first proof-of-concept GRAVITY observation of a low-mass XRB transient, MAXI J1820+070, to search for extended jets on mas scales. We place the tightest constraints yet via direct imaging on the size ofmore »the infrared emitting region of the compact jet in a hard state XRB.« less
  3. The north ecliptic pole (NEP) is an important region for extragalactic surveys. Deep and wide contiguous surveys are being performed by several space observatories, most currently with the eROSITA telescope. Several more are planned for the near future. We analyse all the ROSAT pointed and survey observations in a region of 40 deg 2 around the NEP, restricting the ROSAT field of view to the inner 30′ radius. We obtain an X-ray catalogue of 805 sources with 0.5−2 keV fluxes > 2.9 × 10 −15 erg cm −2 s −1 , about a factor of three deeper than the ROSAT All-Sky Survey in this field. The sensitivity and angular resolution of our data are comparable to the eROSITA All-Sky Survey expectations. The 50% position error radius of the sample of X-ray sources is ∼10″. We use HEROES optical and near-infrared imaging photometry from the Subaru and Canada/France/Hawaii telescopes together with GALEX, SDSS, Pan-STARRS, and WISE catalogues, as well as images from a new deep and wide Spitzer survey in the field to statistically identify the X-ray sources and to calculate photometric redshifts for the candidate counterparts. In particular, we utilize mid-infrared (mid-IR) colours to identify active galactic nucleus (AGN) X-raymore »counterparts. Despite the relatively large error circles and often faint counterparts, together with confusion issues and systematic errors, we obtain a rather reliable catalogue of 766 high-quality optical counterparts, corresponding redshifts and optical classifications. The quality of the dataset is sufficient to look at ensemble properties of X-ray source classes. In particular we find a new population of luminous absorbed X-ray AGN at large redshifts, identified through their mid-IR colours. This populous group of AGN was not recognized in previous X-ray surveys, but could be identified in our work due to the unique combination of survey solid angle, X-ray sensitivity, and quality of the multi-wavelength photometry. We also use the WISE and Spitzer photometry to identify a sample of 185 AGN selected purely through their mid-IR colours, most of which are not detected by ROSAT. Their redshifts and upper limits to X-ray luminosity and X-ray–to–optical flux ratios are even higher than for the new class of X-ray selected luminous type 2 AGN (AGN2); they are probably a natural extension of this sample. This unique dataset is important as a reference sample for future deep surveys in the NEP region, in particular for eROSITA and also for Euclid and SPHEREX. We predict that most of the absorbed distant AGN should be readily picked up by eROSITA, but they require sensitive mid-IR imaging to be recognized as optical counterparts.« less
  4. Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main samplemore »and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.« less
  5. Abstract We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be $34\pm1$ mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle ( $\phi_{\rm op} = 4.5\pm1.2^{\circ}$ ) and the magnetic field strengthmore »( $B_{\rm s} = 104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of X-ray binary jets. Finally, our study emphasises the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of black hole X-ray binaries.« less