skip to main content


Title: Turbulence strength C n 2 estimation from video using physics-based deep learning

Images captured from a long distance suffer from dynamic image distortion due to turbulent flow of air cells with random temperatures, and thus refractive indices. This phenomenon, known as image dancing, is commonly characterized by its refractive-index structure constantCn2as a measure of the turbulence strength. For many applications such as atmospheric forecast model, long-range/astronomy imaging, and aviation safety, optical communication technology,Cn2estimation is critical for accurately sensing the turbulent environment. Previous methods forCn2estimation include estimation from meteorological data (temperature, relative humidity, wind shear, etc.) for single-point measurements, two-ended pathlength measurements from optical scintillometer for path-averagedCn2, and more recently estimatingCn2from passive video cameras for low cost and hardware complexity. In this paper, we present a comparative analysis of classical image gradient methods forCn2estimation and modern deep learning-based methods leveraging convolutional neural networks. To enable this, we collect a dataset of video capture along with reference scintillometer measurements for ground truth, and we release this unique dataset to the scientific community. We observe that deep learning methods can achieve higher accuracy when trained on similar data, but suffer from generalization errors to other, unseen imagery as compared to classical methods. To overcome this trade-off, we present a novel physics-based network architecture that combines learned convolutional layers with a differentiable image gradient method that maintains high accuracy while being generalizable across image datasets.

 
more » « less
NSF-PAR ID:
10376317
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
22
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 40854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperature scaling of collisional broadening parameters for krypton (absorber)4p6S01→<#comment/>5p[3/2]2electronic transition centered at 107.3 nm in the presence of major combustion species (perturber) is investigated. The absorption spectrum in the vicinity of the transition is obtained from the fluorescence due to the two-photon excitation scan of krypton. Krypton was added in small amounts to major combustion species such asCH4,CO2,N2, and air, which then heated to elevated temperatures when flowed through a set of heated coils. In a separate experimental campaign, laminar premixed flat flame product mixtures of methane combustion were employed to extend the investigations to higher temperature ranges relevant to combustion. Collisional full width half maximum (FWHM) (wC) and shift (δ<#comment/>C) were computed from the absorption spectrum by synthetically fitting Voigt profiles to the excitation scans, and their corresponding temperature scaling was determined by fitting power-law temperature dependencies to thewCandδ<#comment/>Cdata for each perturber species. The temperature exponents ofwCandδ<#comment/>Cfor all considered combustion species (perturbers) were−<#comment/>0.73and−<#comment/>0.6, respectively. Whereas the temperature exponents ofwCare closer to the value (−<#comment/>0.7) predicted by the dispersive interaction collision theory, the corresponding exponents ofδ<#comment/>Care in between the dispersive interaction theory and the kinetic theory of hard-sphere collisions. Comparison with existing literature on broadening parameters of NO, OH, and CO laser-induced fluorescence spectra reveal interesting contributions from non-dispersive interactions on the temperature exponent.

     
    more » « less
  2. Pressure scaling of collisional broadening parameters of krypton (absorber)4p6S01→<#comment/>→<#comment/>5p[3/2]2transition centered at 107.3 nm in the presence of nitrogenN2(perturber) is investigated. The absorption spectrum in the vicinity of the transition is obtained from the two-photon excitation scan of krypton in the presence of the perturber at different prescribed pressures varying from a few torrs to 10 atm. The absorption spectra reveal noticeable asymmetry at atmospheric pressure, and the asymmetry becomes increasingly pronounced with pressure; however, the absorption spectra at sub-atmospheric pressures tested are symmetric. The absorption spectra are fitted with synthetic asymmetric Voigt profiles across all pressures, wherein the asymmetry parameter is varied to capture the asymmetry at different pressures. The collisional shift (δ<#comment/>C), the symmetric equivalent collisional full width at half maximum (wC,0), and the asymmetry parameter (a) are determined from the synthetic fits at various pressures. All the parameters are observed to vary linearly with pressure over the entire range of the pressure values tested. The mechanisms that cause the asymmetry in the absorption spectra are also discussed.

     
    more » « less
  3. Amorphous tantala (Ta2O5) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assistAr+orAr+/O2+bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eVAr+. A detrimental influence from low energyO2+bombardment on absorption loss and mechanical loss is observed. Low energyAr+bombardment removes excess oxygen point defects, whileO2+bombardment introduces defects into the tantala films.

     
    more » « less
  4. Abstract

    Consider two half-spaces$$H_1^+$$H1+and$$H_2^+$$H2+in$${\mathbb {R}}^{d+1}$$Rd+1whose bounding hyperplanes$$H_1$$H1and$$H_2$$H2are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$S2,+d:=SdH1+H2+is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$Sd, which contains a great subsphere of dimension$$d-2$$d-2and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$S2,+dand consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$logn. A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$S2,+d. The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.

     
    more » « less
  5. Vortex beams were theoretically demonstrated by patterning a fiber facet withN-segment microphase plates. By changing the aluminum oxynitride material composition of each segment, gradient refractive-index phase plates (GRPs) were designed and introduced a2π<#comment/>lazimuthal optical phase difference. The gradient index profile was able to convert a fiber Gaussian mode to a Laguerre–Gaussian mode with varieties of topological chargel. A three-dimensional finite-difference time-domain method was applied to calculate the near-field optical phase maps and the far-field beam profiles projected from the micro-GRPs. A uniform vortex beam with a symmetrical doughnut shape was obtained by optimizing the GRPs’ radii and the number of segments. The micro-GRPs enabled flat optical components for efficient vortex beam generation.

     
    more » « less