skip to main content


Title: Cross-chain deals and adversarial commerce
Abstract

Modern distributed data management systems face a new challenge: how can autonomous, mutually distrusting parties cooperate safely and effectively? Addressing this challenge brings up familiar questions from classical distributed systems: how to combine multiple steps into a single atomic action, how to recover from failures, and how to synchronize concurrent access to data. Nevertheless, each of these issues requires rethinking when participants are autonomous and potentially adversarial. We propose the notion of across-chain deal, a new way to structure complex distributed computations that manage assets in an adversarial setting. Deals are inspired by classical atomic transactions, but are necessarily different, in important ways, to accommodate the decentralized and untrusting nature of the exchange. We describe novel safety and liveness properties, along with two alternative protocols for implementing cross-chain deals in a system of independent blockchain ledgers. One protocol, based on synchronous communication, is fully decentralized, while the other, based on semi-synchronous communication, requires a globally shared ledger. We also prove that some degree of centralization is required in the semi-synchronous communication model.

 
more » « less
NSF-PAR ID:
10376366
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The VLDB Journal
Volume:
31
Issue:
6
ISSN:
1066-8888
Page Range / eLocation ID:
p. 1291-1309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Things (IoT), forming the foundation of Cyber Physical Systems (CPS), connects a huge number of ubiquitous sensing and mobile computing devices. The mobile IoT systems generate an enormous volume of a variety of dynamic context data and typically count on centralized architectures to process them. However, their inability to ensure security and decline in communication efficiency and response time with the increase in the size of IoT network are some of the many concerning weaknesses that are holding back the fast-paced growth of IoT. Realizing the limitations of centralized systems, recently blockchain-based decentralized architecture is being considered as the key to redesigning the IoT systems in a way that is designed to be secure, transparent, highly resistant to outages, auditable, and efficient. However, before realizing the new promise of blockchain for IoT, there are significant challenges to address. One fundamental challenge is the scale issue around data collection, storage, and analytic as IoT sensor devices possess limited computational power and storage capabilities. In particular, since the chain is always growing, IoT devices require more and more resources. Thus, an oversized chain poses storage and scalability problems. With this in mind, the overall goal of our research is to design a lightweight scalable blockchain framework for IoT of mobile devices. This framework, coined as "Sensor-Chain", promises a new generation of lightweight blockchain management with a superior reduction in resource consumption, and at the same time capable of retaining critical information about the IoT systems of mobile devices. 
    more » « less
  2. Networked control systems, where feedback loops are closed over communication networks, arise in several domains, including smart energy grids, autonomous driving, unmanned aerial vehicles, and many industrial and robotic systems active in service, production, agriculture, and smart homes and cities. In these settings, the two main layers of the system, control and communication, strongly affect each other's performance, and they also reveal the interaction between a cyber-system component, represented by information-based computing and communication technologies, and a physical-system component, represented by the environment that needs to be controlled. The information access and distribution constraints required to achieve reliable state estimation and stabilization in networked control systems have been intensively studied over the course of roughly two decades. This article reviews some of the cornerstone results in this area, draws a map for what we have learned over these years, and describes the new challenges that we will face in the future. Rather than simply listing different results, we present them in a coherent fashion using a uniform notation, and we also put them in context, highlighting both their theoreticalinsights and their practical significance. Particular attention is given to recent developments related to decentralized estimation in distributed sensing and communication systems and the information-theoretic value of event timing in the context of networked control. 
    more » « less
  3. The rise of mobile multi-agent robotic platforms is outpacing control paradigms for tasks that require operating in complex, realistic environments. To leverage inertial, energetic, and cost bene fits of small-scale robots, critical future applications may depend on coordinating large numbers of agents with minimal onboard sensing and communication resources. In this article, we present the perspective that adaptive and resilient autonomous control of swarms of minimal agents might follow from a direct analogy with the neural circuits of spatial cognition in rodents. We focus on spatial neurons such as place cells found in the hippocampus. Two major emergent hippocampal phenomena, self-stabilizing attractor maps and temporal organization by shared oscillations, reveal theoretical solutions for decentralized self-organization and distributed communication in the brain. We consider that autonomous swarms of minimal agents with low-bandwidth communication are analogous to brain circuits of oscillatory neurons with spike-based propagation of information. The resulting notion of `neural swarm control' has the potential to be scalable, adaptive to dynamic environments, and resilient to communication failures and agent attrition. We illustrate a path toward extending this analogy into multi-agent systems applications and discuss implications for advances in decentralized swarm control. 
    more » « less
  4. Abstract

    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.

     
    more » « less
  5. Abstract

    We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.

     
    more » « less