skip to main content


Title: Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome
Abstract

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genusVariovoraxvia an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect theVariovoraxauxin degradation locus to define the genesiadDEas necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon’s MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products:iac-like andiad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizingArabidopsisplants show that while all degrade IAA, only strains containingiad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests thatiad-like operon-containing bacterial strains, includingVariovoraxspecies, play a key ecological role in modulating auxins in the plant microbiome.

 
more » « less
Award ID(s):
1917270
NSF-PAR ID:
10376376
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Microbiology
Volume:
7
Issue:
11
ISSN:
2058-5276
Page Range / eLocation ID:
p. 1817-1833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bradford, Patricia A. (Ed.)
    ABSTRACT

    Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility inEscherichia coliand other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump inE. coliand otherEnterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility inE. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility inE. coliby directly repressing transcription of theflhDCoperon, but not the other flagellum genes/operons tested.flhDCencodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to theflhDCpromoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed inE. colistrains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility inE. colito maintain homeostasis and escape hazards.

    IMPORTANCE

    Efflux and motility play a major role in bacterial growth, colonization, and survival. InEscherichia coli, the transcriptional repressor AcrR is known to directly repress efflux and was later found to also repress flagellum biosynthesis and motility by Kim et al. (J Microbiol Biotechnol 26:1824–1828, 2016, doi: 10.4014/jmb.1607.07058). However, it remained unknown whether AcrR represses flagellum biosynthesis and motility directly and through which target genes, or indirectly because of altering the amount of efflux. This study reveals that AcrR represses flagellum biosynthesis and motility by directly repressing the expression of theflhDCmaster regulator of flagellum biosynthesis and motility genes, but not the other flagellum genes tested. We also show that the antimicrobial, efflux pump substrate, and AcrR ligand ethidium bromide regulates motility via AcrR. Overall, these findings support a novel model of direct co-regulation of efflux and motility mediated by AcrR in response to stress inE. coli.

     
    more » « less
  2. Abstract Plain language summary

    Cyanobacteria are well known to fix atmospheric CO2into sugars using the enzyme Rubisco. Less appreciated are the carbon‐fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.

     
    more » « less
  3. Summary

    Auxin is widely involved in plant growth and development. However, the molecular mechanism on how auxin carries out this work is unclear. In particular, the effect of auxin on pre‐mRNApost‐transcriptional regulation is mostly unknown. By using a poly(A) tag (PAT) sequencing approach,mRNAalternative polyadenylation (APA) profiles after auxin treatment were revealed. We showed that hundreds of poly(A) site clusters (PACs) are affected by auxin at the transcriptome level, where auxin reducesPACdistribution in 5′‐untranslated region (UTR), but increases in the 3′UTR.APAsite usage frequencies of 42 genes were switched by auxin, suggesting that auxin affects the choice of poly(A) sites. Furthermore, poly(A) signal selection was altered after auxin treatment. For example, a mutant of poly(A) signal binding proteinCPSF30 showed altered sensitivity to auxin treatment, indicating interactions between auxin and the poly(A) signal recognition machinery. We also found that auxin activity on lateral root development is likely mediated by altered expression ofARF7,ARF19andIAA14through poly(A) site switches. Our results shed light on the molecular mechanisms of auxin responses relative to its interactions withmRNApolyadenylation.

     
    more » « less
  4. Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFBfunctionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.

     
    more » « less
  5. Auxins are a class of plant hormones playing crucial roles in a plant’s growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis. 
    more » « less