skip to main content

Title: Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome
Abstract

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genusVariovoraxvia an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect theVariovoraxauxin degradation locus to define the genesiadDEas necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference. We determine the crystal structures and binding properties of the operon’s MarR-family repressor with IAA and other auxins. Auxin degradation operons were identified across the bacterial tree of life and we define two distinct types on the basis of gene content and metabolic products:iac-like andiad-like. The structures of MarRs from representatives of each auxin degradation operon type establish that each has distinct IAA-binding pockets. Comparison of representative IAA-degrading strains from diverse bacterial genera colonizingArabidopsisplants show that while all degrade IAA, only strains containingiad-like auxin-degrading operons interfere with auxin signalling in a complex synthetic community context. This suggests thatiad-like operon-containing bacterial strains, includingVariovoraxspecies, play a key ecological role in modulating auxins in the plant microbiome.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10376376
Journal Name:
Nature Microbiology
Volume:
7
Issue:
11
Page Range or eLocation-ID:
p. 1817-1833
ISSN:
2058-5276
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFBfunctionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.

  2. Protein-based molecular switches play critical roles in biological processes. The importance of the prolylcistransswitch is underscored by the ubiquitous presence of peptidyl prolyl isomerases such as cyclophilins that accelerate the intrinsically slow isomerization rate. In rice, a tryptophan−proline (W-P)cistransswitch in transcription repressor protein OsIAA11 along with its associated cyclophilin LRT2 are essential components in a negative feedback gene regulation circuit that controls lateral root initiation in response to the plant hormone auxin. Importantly, no quantitative characterizations of the individual (microscopic) thermodynamic and kinetic parameters for any cyclophilin-catalyzed W-P isomerization have been reported. Here we present NMR studies that determine and independently validate these parameters for LRT2 catalysis of the W-P motif in OsIAA11, providing predictive power for understanding the role of this switch in the auxin-responsive circuit and the resulting lateral rootless phenotype in rice. We show that the observed isomerization rate is linearly dependent on LRT2 concentration but is independent of OsIAA11 concentration over a wide range, and LRT2 is optimally tuned to maintain OsIAA11 at itscistransequilibrium to supply the slower downstreamcis-specific proteasomal degradation with maximal OsIAA11 substrate. This indicates that accelerating the LRT2-catalyzed isomerization would not accelerate OsIAA degradation, whereas decreasing this rate via targeted mutation could revealmore »relationships between circuit dynamics and lateral root development. Moreover, we show that sequences flanking the highly conserved Aux/IAA W-P motif do not impact LRT2 catalysis, suggesting that the parameters determined here are broadly applicable across highly conserved cyclophilins and their Aux/IAA targets.

    « less
  3. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilizationmore »serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.« less
  4. Abstract

    Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungusCaecomyces churrovisand the methanogenMethanobacterium bryantii(not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated inC. churrovisacross a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome ofC. churroviswas obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus.C. churrovispossess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative toC. churrovismonoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation ofmore »genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of theC. churrovisstrain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal–methanogen physical associations and fungal cell wall development and remodeling.

    « less
  5. Katherine McMahon, University of (Ed.)
    Plastics, such as polyethylene terephthalate (PET) from water bottles, are polluting our oceans, cities, and soils. While a number of Pseudomonas species have been described that degrade aliphatic polyesters, such as polyethylene (PE) and polyurethane (PUR), few from this genus that degrade the semiaromatic poly- mer PET have been reported. In this study, plastic-degrading bacteria were isolated from petroleum-polluted soils and screened for lipase activity that has been associ- ated with PET degradation. Strains and consortia of bacteria were grown in a liquid carbon-free basal medium (LCFBM) with PET as the sole carbon source. We moni- tored several key physical and chemical properties, including bacterial growth and modi!cation of the plastic surface, using scanning electron microscopy (SEM) and attenuated total re"ectance-Fourier transform infrared spectroscopy (ATR-FTIR) spec- troscopy. We detected by-products of hydrolysis of PET using 1H-nuclear magnetic resonance (1H NMR) analysis, consistent with the ATR-FTIR data. The full consortium of !ve strains containing Pseudomonas and Bacillus species grew synergistically in the presence of PET and the cleavage product bis(2-hydroxyethyl) terephthalic acid (BHET) as sole sources of carbon. Secreted enzymes extracted from the full consor- tium were capable of fully converting BHET to the metabolically usable monomers terephthalic acid (TPA) andmore »ethylene glycol. Draft genomes provided evidence for mixed enzymatic capabilities between the strains for metabolic degradation of TPA and ethylene glycol, the building blocks of PET polymers, indicating cooperation and ability to cross-feed in a limited nutrient environment with PET as the sole carbon source. The use of bacterial consortia for the biodegradation of PET may provide a partial solution to widespread planetary plastic accumulation.« less