skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Central concentration of warm and dense molecular gas in a strongly lensed submillimeter galaxy at z = 6
Abstract

We report the detection of the CO(12–11) line emission toward G09-83808 (or H-ATLAS J090045.4+004125), a strongly-lensed submillimeter galaxy at z = 6.02, with Atacama Large Millimeter/submillimeter Array observations. Combining previously detected [O iii] 88 μm, [N ii] 205 μm, and dust continuum at 0.6 mm and 1.5 mm, we investigate the physical properties of the multi-phase interstellar medium in G09-83808. A source-plane reconstruction reveals that the region of the CO(12–11) emission is compact ($R_\mathrm{{e, CO}}=0.49^{+0.29}_{-0.19}\:\mbox{kpc}$) and roughly coincides with that of the dust continuum. Non-local thermodynamic equilibrium radiative transfer modeling of CO spectral-line energy distribution reveals that most of the CO(12–11) emission comes from a warm (kinetic temperature of Tkin = 320 ± 170 K) and dense [log (nH2/cm−3) = 5.4 ± 0.6] gas, indicating that the warm and dense molecular gas is concentrated in the central 0.5 kpc region. The luminosity ratio in G09-83808 is estimated to be LCO(12-11)/LCO(6-5) = 1.1 ± 0.2. The high ratio is consistent with those in local active galactic nuclei (AGNs) and 6 < z < 7 quasars, the fact of which implies that G09-83808 would be a good target to explore dust-obscured AGNs in the epoch of reionization. In the reconstructed [O iii] 88 μm and [N ii] 205 μm cubes, we also find that a monotonic velocity gradient is extending over the central starburst region by a factor of 2 and that star-forming sub-components exist. High-resolution observations of bright [C ii] 158 μm line emissions will enable us to characterize the kinematics of a possible rotating disk and the nature of the sub-components.

 
more » « less
NSF-PAR ID:
10376381
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
74
Issue:
6
ISSN:
0004-6264
Format(s):
Medium: X Size: p. 1429-1440
Size(s):
["p. 1429-1440"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present observations of [N ii] 205 μm, [O iii] 88 μm, and dust emission in a strongly-lensed, submillimeter galaxy (SMG) at z = 6.0, G09.83808, with the Atacama Large Millimeter/submillimeter Array (ALMA). Both [N ii] and [O iii] line emissions are detected at >12σ in the ${0{^{\prime \prime}_{.}}8}$-resolution maps. Lens modeling indicates that the spatial distribution of the dust continuum emission is well characterized by a compact disk with an effective radius of 0.64 ± 0.02 kpc and a high infrared surface brightness of ΣIR = (1.8 ± 0.3) × 1012 L⊙ kpc−2. This result supports that G09.83808 is the progenitor of compact quiescent galaxies at z ∼ 4, where the majority of its stars are expected to be formed through a strong and short burst of star formation. G09.83808 and other lensed SMGs show a decreasing trend in the [N ii] line to infrared luminosity ratio with increasing continuum flux density ratio between 63 and 158 μm, as seen in local luminous infrared galaxies (LIRGs). The decreasing trend can be reproduced by photoionization models with increasing ionization parameters. Furthermore, by combining the [N ii]/[O iii] luminosity ratio with far-infrared continuum flux density ratio in G09.83808, we infer that the gas phase metallicity is already Z ≈ 0.5–0.7 Z⊙. G09.83808 is likely one of the earliest galaxies that has been chemically enriched at the end of reionization.

     
    more » « less
  2. WISE J224607.6–052634.9 (W2246–0526) is a hot dust-obscured galaxy atz = 4.601, and the most luminous obscured quasar known to date. W2246–0526 harbors a heavily obscured supermassive black hole that is most likely accreting above the Eddington limit. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) in seven bands, including band 10, of the brightest far-infrared (FIR) fine-structure emission lines of this galaxy: [OI]63 μm, [OIII]88 μm, [NII]122 μm, [OI]145 μm, [CII]158 μm, [NII]205 μm, [CI]370 μm, and [CI]609 μm. A comparison of the data to a large grid of CLOUDYradiative transfer models reveals that a high hydrogen density (nH ∼ 3 × 103cm−3) and extinction (AV ∼ 300 mag), together with extreme ionization (log(U) = − 0.5) and a high X-ray to UV ratio (αox ≥ −0.8) are required to reproduce the observed nuclear line ratios. The values ofαoxandUare among the largest found in the literature and imply the existence of an X-ray-dominated region (XDR). In fact, this component explains the a priori very surprising non-detection of the [OIII]88 μmemission line, which is actually suppressed, instead of boosted, in XDR environments. Interestingly, the best-fitted model implies higher X-ray emission and lower CO content than what is detected observationally, suggesting the presence of a molecular gas component that should be further obscuring the X-ray emission over larger spatial scales than the central region that is being modeled. These results highlight the need for multiline infrared observations to characterize the multiphase gas in high redshift quasars and, in particular, W2246–0526 serves as an extreme benchmark for comparisons of interstellar medium conditions with other quasar populations at cosmic noon and beyond.

     
    more » « less
  3. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings. 
    more » « less
  4. Aims . We present and study spatially resolved imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of multiple 12 CO( J  = 6 − 5, 8−7, and 9−8) and two H 2 O(2 02 −1 11 and 2 11 −2 02 ) emission lines and cold dust continuum toward the gravitationally lensed dusty star-forming galaxy SPT 0346-52 at z  = 5.656. Methods . Using a visibility-domain source-plane reconstruction we probe the structure and dynamics of the different components of the interstellar medium (ISM) in this galaxy down to scales of 1 kpc in the source plane. Results . Measurements of the intrinsic sizes of the different CO emission lines indicate that the higher J transitions trace more compact regions in the galaxy. Similarly, we find smaller dust continuum intrinsic sizes with decreasing wavelength, based on observations at rest frame 130, 300, and 450 μ m. The source shows significant velocity structure, and clear asymmetry where an elongated structure is observed in the source plane with significant variations in their reconstructed sizes. This could be attributed to a compact merger or turbulent disk rotation. The differences in velocity structure through the different line tracers, however, hint at the former scenario in agreement with previous [CII] line imaging results. Measurements of the CO line ratios and magnifications yield significant variations as a function of velocity, suggesting that modeling of the ISM using integrated values could be misinterpreted. Modeling of the ISM in SPT 0346-52 based on delensed fluxes indicates a highly dense and warm medium, qualitatively similar to that observed in high-redshift quasar hosts. 
    more » « less
  5. Abstract

    We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index ofTdust=4114+17K andβ=1.70.7+1.1, respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies.

     
    more » « less