skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: The early evolution of magnetar rotation – I. Slowly rotating ‘normal’ magnetars

In the seconds following their formation in core-collapse supernovae, ‘proto’-magnetars drive neutrino-heated magnetocentrifugal winds. Using a suite of two-dimensional axisymmetric magnetohydrodynamic simulations, we show that relatively slowly rotating magnetars with initial spin periods of P⋆0 = 50–500 ms spin down rapidly during the neutrino Kelvin–Helmholtz cooling epoch. These initial spin periods are representative of those inferred for normal Galactic pulsars, and much slower than those invoked for gamma-ray bursts and superluminous supernovae. Since the flow is non-relativistic at early times, and because the Alfvén radius is much larger than the proto-magnetar radius, spin-down is millions of times more efficient than the typically used dipole formula. Quasi-periodic plasmoid ejections from the closed zone enhance spin-down. For polar magnetic field strengths B0 ≳ 5 × 1014 G, the spin-down time-scale can be shorter than the Kelvin–Helmholtz time-scale. For B0 ≳ 1015 G, it is of the order of seconds in early phases. We compute the spin evolution for cooling proto-magnetars as a function of B0, P⋆0, and mass (M). Proto-magnetars born with B0 greater than $\simeq 1.3\times 10^{15}\, {\rm \, G}\, (P_{\star 0}/{400\, \rm \, ms})^{-1.4}(M/1.4\, {\rm M}_\odot)^{2.2}$ spin down to periods >1 s in just the first few seconds of evolution, well before the end of the cooling epoch and the onset of classic dipole spin-down. Spin-down is more efficient for lower M and for larger P⋆0. We discuss the implications for observed magnetars, including the discrepancy between their characteristic ages and supernova remnant ages. Finally, we speculate on the origin of 1E 161348−5055 in the remnant RCW 103, and the potential for other ultra-slowly rotating magnetars.

more » « less
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 3008-3023
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Rapidly rotating magnetars have been associated with gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe). Using a suite of two-dimensional magnetohydrodynamic simulations at fixed neutrino luminosity and a couple of evolutionary models with evolving neutrino luminosity and magnetar spin period, we show that magnetars are viable central engines for powering GRBs and SLSNe. We also present analytical estimates of the energy outflow rate from the proto-neutron star (PNS) as a function of polar magnetic field strength B0, PNS angular velocity Ω⋆, PNS radius R⋆, and mass outflow rate $\dot{M}$. We show that rapidly rotating magnetars with spin periods P⋆ ≲ 4 ms and polar magnetic field strength B0 ≳ 1015 G can release 1050 to 5 × 1051 erg of energy during the first ∼2 s of the cooling phase. Based on this result, it is plausible that sustained energy injection by magnetars through the relativistic wind phase can power GRBs. We also show that magnetars with moderate field strengths of B0 ≲ 5 × 1014 G do not release a large fraction of their rotational kinetic energy during the cooling phase and, hence, are not likely to power GRBs. Although we cannot simulate to times greater than ∼3–5 s after a supernova, we can hypothesize that moderate field strength magnetars can brighten the supernova light curves by releasing their rotational kinetic energy via magnetic dipole radiation on time-scales of days to weeks, since these do not expend most of their rotational kinetic energy during the early cooling phase.

    more » « less
  2. Abstract We explore the effects of rapid rotation on the properties of neutrino-heated winds from proto-neutron stars (PNS) formed in core-collapse supernovae or neutron-star mergers by means of three-dimensional general-relativistic hydrodynamical simulations with M0 neutrino transport. We focus on conditions characteristic of a few seconds into the PNS cooling evolution when the neutrino luminosities obey L ν e + L ν ¯ e ≈ 7 × 10 51 erg s −1 , and over which most of the wind mass loss will occur. After an initial transient phase, all of our models reach approximately steady-state outflow solutions with positive energies and sonic surfaces captured on the computational grid. Our nonrotating and slower rotating models (angular velocity relative to Keplerian Ω/Ω K ≲ 0.4; spin period P ≳ 2 ms) generate approximately spherically symmetric outflows with properties in good agreement with previous PNS wind studies. By contrast, our most rapidly spinning PNS solutions (Ω/Ω K ≳ 0.75; P ≈ 1 ms) generate outflows focused in the rotational equatorial plane with much higher mass-loss rates (by over an order of magnitude), lower velocities, lower entropy, and lower asymptotic electron fractions, than otherwise similar nonrotating wind solutions. Although such rapidly spinning PNS are likely rare in nature, their atypical nucleosynthetic composition and outsized mass yields could render them important contributors of light neutron-rich nuclei compared to more common slowly rotating PNS birth. Our calculations pave the way to including the combined effects of rotation and a dynamically important large-scale magnetic field on the wind properties within a three-dimensional GRMHD framework. 
    more » « less

    We investigate the impact of strong initial magnetic fields in core-collapse supernovae of non-rotating progenitors by simulating the collapse and explosion of a $16.9\, \mathrm{M}_\odot$ star for a strong- and weak-field case assuming a twisted-torus field with initial central field strengths of ${\approx }10^{12}$ and ${\approx }10^{6}\, \mathrm{G}$. The strong-field model has been set up with a view to the fossil-field scenario for magnetar formation and emulates a pre-collapse field configuration that may occur in massive stars formed by a merger. This model undergoes shock revival already $100\, \mathrm{ms}$ after bounce and reaches an explosion energy of $9.3\times 10^{50}\, \mathrm{erg}$ at $310\, \mathrm{ms}$, in contrast to a more delayed and less energetic explosion in the weak-field model. The strong magnetic fields help trigger a neutrino-driven explosion early on, which results in a rapid rise and saturation of the explosion energy. Dynamically, the strong initial field leads to a fast build-up of magnetic fields in the gain region to 40 per cent of kinetic equipartition and also creates sizable pre-shock ram pressure perturbations that are known to be conducive to asymmetric shock expansion. For the strong-field model, we find an extrapolated neutron star kick of ${\approx }350\, \mathrm{km}\, \mathrm{s}^{-1}$, a spin period of ${\approx }70\, \mathrm{ms}$, and no spin-kick alignment. The dipole field strength of the proto-neutron star is $2\times 10^{14}\, \mathrm{G}$ by the end of the simulation with a declining trend. Surprisingly, the surface dipole field in the weak-field model is stronger, which argues against a straightforward connection between pre-collapse fields and the birth magnetic fields of neutron stars.

    more » « less
  4. Abstract

    Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS.

    more » « less
  5. Abstract

    We perform the first 3D ab-initio general-relativistic neutrino-radiation hydrodynamics of a long-lived neutron star merger remnant spanning a fraction of its cooling timescale. We find that neutrino cooling becomes the dominant energy loss mechanism after the gravitational-wave dominated phase (∼20 ms postmerger). Electron flavor antineutrino luminosity dominates over electron flavor neutrino luminosity at early times, resulting in a secular increase of the electron fraction in the outer layers of the remnant. However, the two luminosities become comparable ∼20–40 ms postmerger. A dense gas of electron antineutrinos is formed in the outer core of the remnant at densities ∼1014.5g cm−3, corresponding to temperature hot spots. The neutrinos account for ∼10% of the lepton number in this region. Despite the negative radial temperature gradient, the radial entropy gradient remains positive, and the remnant is stably stratified according to the Ledoux criterion for convection. A massive accretion disk is formed from the material squeezed out of the collisional interface between the stars. The disk carries a large fraction of the angular momentum of the system, allowing the remnant massive neutron star to settle to a quasi-steady equilibrium within the region of possible, stable, rigidly rotating configurations. The remnant is differentially rotating, but it is stable against the magnetorotational instability. Other MHD mechanisms operating on longer timescales are likely responsible for the removal of the differential rotation. Our results indicate the remnant massive neutron star is thus qualitatively different from a protoneutron stars formed in core-collapse supernovae.

    more » « less