skip to main content


Title: Functional assessment of homozygous ALDH18A1 variants reveals alterations in amino acid and antioxidant metabolism
Abstract

Mono- and bi-allelic variants in ALDH18A1 cause a spectrum of human disorders associated with cutaneous and neurological findings that overlap with both cutis laxa and spastic paraplegia. ALDH18A1 encodes the bifunctional enzyme pyrroline-5-carboxylate synthetase (P5CS) that plays a role in the de novo biosynthesis of proline and ornithine. Here we characterize a previously unreported homozygous ALDH18A1 variant (p.Thr331Pro) in four affected probands from two unrelated families, and demonstrate broad-based alterations in amino acid and antioxidant metabolism. These four patients exhibit variable developmental delay, neurological deficits and loose skin. Functional characterization of the p.Thr331Pro variant demonstrated a lack of any impact on the steady-state level of the P5CS monomer or mitochondrial localization of the enzyme, but reduced incorporation of the monomer into P5CS oligomers. Using an unlabeled NMR-based metabolomics approach in patient fibroblasts and ALDH18A1-null human embryonic kidney cells expressing the variant P5CS, we identified reduced abundance of glutamate and several metabolites derived from glutamate, including proline and glutathione. Biosynthesis of the polyamine putrescine, derived from ornithine, was also decreased in patient fibroblasts, highlighting the functional consequence on another metabolic pathway involved in antioxidant responses in the cell. RNA sequencing of patient fibroblasts revealed transcript abundance changes in several metabolic and extracellular matrix-related genes, adding further insight into pathogenic processes associated with impaired P5CS function. Together these findings shed new light on amino acid and antioxidant pathways associated with ALDH18A1-related disorders, and underscore the value of metabolomic and transcriptomic profiling to discover new pathways that impact disease pathogenesis.

 
more » « less
NSF-PAR ID:
10376391
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Human Molecular Genetics
ISSN:
0964-6906
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The metabolic needs for postnatal growth of the human nervous system are vast. Recessive loss-of-function mutations in the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2) in humans cause postnatal undergrowth of brain, and cognitive and motor disability. We demonstrate that GPT2 governs critical metabolic mechanisms in neurons required for neuronal growth and survival. These metabolic processes include neuronal alanine synthesis and anaplerosis, the replenishment of tricarboxylic acid (TCA) cycle intermediates. We performed metabolomics across postnatal development in Gpt2-null mouse brain to identify the trajectory of dysregulated metabolic pathways: alterations in alanine occur earliest; followed by reduced TCA cycle intermediates and reduced pyruvate; followed by elevations in glycolytic intermediates and amino acids. Neuron-specific deletion of GPT2 in mice is sufficient to cause motor abnormalities and death pre-weaning, a phenotype identical to the germline Gpt2-null mouse. Alanine biosynthesis is profoundly impeded in Gpt2-null neurons. Exogenous alanine is necessary for Gpt2-null neuronal survival in vitro but is not needed for Gpt2-null astrocytes. Dietary alanine supplementation in Gpt2-null mice enhances animal survival and improves the metabolic profile of Gpt2-null brain but does not alone appear to correct motor function. In surviving Gpt2-null animals, we observe smaller upper and lower motor neurons in vivo. We also observe selective death of lower motor neurons in vivo with worsening motor behavior with age. In conclusion, these studies of the pathophysiology of GPT2 Deficiency have identified metabolic mechanisms that are required for neuronal growth and that potentially underlie selective neuronal vulnerabilities in motor neurons. 
    more » « less
  2. Abstract

    Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.

     
    more » « less
  3. null (Ed.)
    Plant growth, development, and nutritional quality depends upon amino acid homeostasis, especially in seeds. However, our understanding of the underlying genetics influencing amino acid content and composition remains limited, with only a few candidate genes and quantitative trait loci identified to date. Improved knowledge of the genetics and biological processes that determine amino acid levels will enable researchers to use this information for plant breeding and biological discovery. Toward this goal, we used genomic prediction to identify biological processes that are associated with, and therefore potentially influence, free amino acid (FAA) composition in seeds of the model plant Arabidopsis thaliana . Markers were split into categories based on metabolic pathway annotations and fit using a genomic partitioning model to evaluate the influence of each pathway on heritability explained, model fit, and predictive ability. Selected pathways included processes known to influence FAA composition, albeit to an unknown degree, and spanned four categories: amino acid, core, specialized, and protein metabolism. Using this approach, we identified associations for pathways containing known variants for FAA traits, in addition to finding new trait-pathway associations. Markers related to amino acid metabolism, which are directly involved in FAA regulation, improved predictive ability for branched chain amino acids and histidine. The use of genomic partitioning also revealed patterns across biochemical families, in which serine-derived FAAs were associated with protein related annotations and aromatic FAAs were associated with specialized metabolic pathways. Taken together, these findings provide evidence that genomic partitioning is a viable strategy to uncover the relative contributions of biological processes to FAA traits in seeds, offering a promising framework to guide hypothesis testing and narrow the search space for candidate genes. 
    more » « less
  4. Abstract

    The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3′-5′ exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.

     
    more » « less
  5. BACKGROUND Diverse organisms, from archaea and bacteria to plants and humans, use receptor systems to recognize both pathogens and dangerous self-derived or environmentally derived stimuli. These intricate, well-coordinated immune systems, composed of innate and adaptive components, ensure host survival. In the late 20th century, researchers identified the Toll/interleukin-1/resistance gene (TIR) domain as an evolutionarily conserved component of animal and plant innate immune systems. Today, TIR-domain proteins are known to be broadly distributed across the tree of life. The TIR domain was first recognized as an adaptor for the assembly of macromolecular signaling complexes in mammalian innate immune pathways. Work on axon degeneration in animals—as well as on plant, archaeal, and bacterial immune systems—has uncovered additional enzymatic activities for TIR domains. ADVANCES Mammalian axons initiate a self-destruct program upon injury and during disease that is mediated by the sterile alpha and TIR motif containing 1 (SARM1) protein. The SARM1 TIR domain enzymatically consumes the essential metabolic cofactor nicotinamide adenine dinucleotide (NAD + ) to promote axonal death. Identification of the SARM1 NAD + -consuming enzyme (NADase) revealed that TIR domains can function as enzymes. Given the evolutionary conservation of TIR domains, studies investigated whether the SARM1 TIR NADase was also conserved. Indeed, bacteria, archaea, and plant TIR domains possess NADase activity. In prokaryotes, TIR NADase activity is found in an ancient antiphage immune system. In plants, identification of TIR NADase activity and linkage of TIR enzymatic products to downstream signaling components addressed the question of how nucleotide-binding, leucine-rich repeat (NLR) receptors trigger hypersensitive cell death during an immune response. Studies in plants show that their TIR domains can cleave nucleic acids and possess 2′,3′ cyclic adenosine monophosphate (2′,3′-cAMP) and 2′,3′ cyclic guanosine monophosphate (2′,3′-cGMP) synthetase activity that aids cell death programs in plant innate immunity. Thus, TIR domains constitute an ancient family of enzymes that are activated in immune and cell death pathways. OUTLOOK The discovery of TIR-domain enzyme activities carries implications for innate immunity and neurodegeneration. The identification of the SARM1 NADase defined a drug target for a wide number of neurodegenerative diseases that is being exploited in both preclinical and clinical studies. Hyperactive mutations in the SARM1 NADase have been discovered in amyotrophic lateral sclerosis (ALS) patients. Future work will seek to clarify the contribution of the SARM1 axon degeneration pathway to ALS pathogenesis. NAD + biology influences cellular processes from metabolism to DNA repair to aging. How TIR enzymes influence the NAD + metabolome and its associated pathways in bacteria, archaea, plants, and animals will be an exciting area for upcoming investigation. The discovery of the diversity of TIR enzymatic products is revealing signaling pathways across kingdoms. Discovery of TIR enzymatic function in plants and animals may yet inspire studies of enzymatic functions for Toll-like receptors in animals. We anticipate that cross-kingdom studies of TIR-domain function will guide interventions that will span the tree of life, from treating human neurodegenerative disorders and bacterial infections to preventing plant diseases. Conserved TIR-domain enzymatic activity. TIR-domain proteins from prokaryotes and eukaryotes cleave NAD + into nicotinamide (Nam), ADP-ribose (ADPR), cyclic ADP-ribose (cADPR), isomers of cyclic ADP-ribose (2′ or 3′cADPR), and related molecules [e.g., phosphoribosyl adenosine monophosphate (pRib-AMP)]. Plant TIR domains also possess a nuclease activity, can degrade DNA and RNA, and can function as a 2′,3′-cAMP or 2′,3′-cGMP synthetase. TIR enzymatic activity drives cell death and immune pathways across kingdoms. TIR activity can kill cells directly through NAD + depletion or indirectly using enzymatic products as signal molecules. The representative TIR domain structure shown here is Protein Data Bank ID 6O0Q. EDS1, enhanced disease susceptibility 1; ThsA, Thoeris A. 
    more » « less