skip to main content


Title: Evolution and genetics of bighead and silver carps: Native population conservation versus invasive species control
Abstract

Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively called bigheaded carps, are cyprinids native mainly to China and have been introduced to over 70 countries. Paleontological and molecular phylogenetic analyses demonstrate bighead and silver carps originated from the Yangtze‐Huanghe River basins and modern populations may have derived from the secondary contact of geographically isolated fish during the last glacial events. Significant genetic differences are found among populations of native rivers (Yangtze, Pearl, and Amur) as well as introduced/invasive environments (Mississippi R., USA and Danube R., Hungary), suggesting genetic backgrounds and ecological selection may play a role in population differentiation. Population divergence of bighead carp or silver carp has occurred within their native rivers, whereas, within the Mississippi River Basin (MRB)—an introduced region, such genetic differentiation is likely taking place at least in silver carp. Interspecific hybridization between silver and bighead carps is rare within their native regions; however, extensive hybridization is observed in the MRB, which could be contributed by a shift to a more homogenous environment that lacks reproductive isolation barriers for the restriction of gene flow between species. The wild populations of native bighead and silver carps have experienced dramatic declines; in contrast, the introduced bigheaded carps overpopulate the MRB and are considered two invasive species, which strongly suggests fishing capacity (overfishing and underfishing) be a decisive factor for fishery resource exploitation and management. This review provides not only a global perspective of evolutionary history and population divergence of bigheaded carps but also a forum that calls for international research collaborations to deal with critical issues related to native population conservation and invasive species control.

 
more » « less
NSF-PAR ID:
10376533
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Evolutionary Applications
Volume:
13
Issue:
6
ISSN:
1752-4571
Page Range / eLocation ID:
p. 1351-1362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The genetic paradox of biological invasions is complex and multifaceted. In particular, the relative role of disparate propagule sources and genetic adaptation through postintroduction hybridization has remained largely unexplored. To add resolution to this paradox, we investigate the genetic architecture responsible for the invasion of two invasive Asian carp species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) (bigheaded carps) that experience extensive hybridization in the Mississippi River Basin (MRB). We sequenced the genomes of bighead and silver carps (~1.08G bp and ~1.15G bp, respectively) and their hybrids collected from the MRB. We found moderate‐to‐high heterozygosity in bighead (0.0021) and silver (0.0036) carps, detected significantly higher dN/dS ratios of single‐copy orthologous genes in bigheaded carps versus 10 other species of fish, and identified genes in both species potentially associated with environmental adaptation and other invasion‐related traits. Additionally, we observed a high genomic similarity (96.3% in all syntenic blocks) between bighead and silver carps and over 90% embryonic viability in their experimentally induced hybrids. Our results suggest intrinsic genomic features of bigheaded carps, likely associated with life history traits that presumably evolved within their native ranges, might have facilitated their initial establishment of invasion, whereasex-situinterspecific hybridization between the carps might have promoted their range expansion. This study reveals an alternative mechanism that could resolve one of the genetic paradoxes in biological invasions and provides invaluable genomic resources for applied research involving bigheaded carps.

     
    more » « less
  2. Abstract

    Hypophthalmichthys molitrix,silver carp, is an invasive Asian carp that has become increasingly widespread and ecologically destructive within the upper Mississippi River Basin. Its complex trophic anatomy may help explain the apparent efficiency with which they consume phytoplankton, outcompeting native filter feeders. This cypriniform species is characterized by trophic synapomorphies that include a palatal organ, loss of upper pharyngeal jaws, and a hypertrophied lower pharyngeal jaw. However, in silver carp these structures have become greatly modified and diverge from the more basal condition that characterizes species such as goldfish. The trophic apparatus of silver carp is composed of discrete structures that are functionally coupled: filtering plates, paired epibranchial organs (EBO), a modified palatal organ composed of large muscular folds that interdigitate with the filtering plates, and hypertrophied lower pharyngeal jaws and teeth. The filtering plates fill a significant portion of the buccal cavity, especially since the distal parts of these filtering plates make up a key component of the EBOs. EBOs, food aggregating structures found in many teleosts, are thought to have independently evolved at least six times. Ranging in complexity from small slits on the dorsal wall of the pharyngeal cavity to exceedingly intricate spiraling structures, EBOs are morphologically diverse among filter‐feeding fishes. Despite this morphological diversity and broad taxonomic distribution, little is known regarding the functional anatomy of the EBO. Moreover, the EBO in silver carp is distinct from the organs previously described in other species, being created by four independent pharyngeal involutions (instead of the more typical one or two) that form spiral‐shaped pharyngeal tubes surrounded by circumferential muscle. On each side of the head greatly hypertrophied hyomandibulae and opercles are connected to the anterior cartilaginous caps of the bilateral EBOs via enlarged muscles. Given that these fish are pump filter feeders we hypothesize that the opercula may compress and expand the EBOs during pumping causing food to be moved posteriorly toward the pharyngeal jaws.

     
    more » « less
  3. Abstract Aim

    Present Amazonian diversity patterns can result from many different mechanisms and, consequently, the factors contributing to divergence across regions and/or taxa may differ. Nevertheless, the river‐barrier hypothesis is still widely invoked as a causal process in divergence of Amazonian species. Here we use model‐based phylogeographic analyses to test the extent to which major Amazonian rivers act similarly as barriers across time and space in two broadly distributed Amazonian taxa.

    Local

    Amazon rain forest.

    Taxon

    The lizardGonatodes humeralis(Sphaerodactylidae) and the tree frogDendropsophus leucophyllatus(Hylidae).

    Methods

    We obtained RADseq data for samples distributed across main river barriers, representing main Areas of Endemism previously proposed for the region. We conduct model‐based phylogeographic and genetic differentiation analyses across each population pair.

    Results

    Measures of genetic differentiation (based onFSTcalculated from genomic data) show that all rivers are associated with significant genetic differentiation. Parameters estimated under investigated divergence models showed that divergence times for populations separated by each of the 11 bordering rivers were all fairly recent. The degree of differentiation consistently varied between taxa and among rivers, which is not an artifact of any corresponding difference in the genetic diversities of the respective taxa, or to amounts of migration based on analyses of the site‐frequency spectrum.

    Main conclusions

    Taken together, our results support a dispersal (rather than vicariance) history, without strong evidence of congruence between these species and rivers. However, once a species crossed a river, populations separated by each and every river have remained isolated—in this sense, rivers act similarly as barriers to any further gene flow. This result suggests differing degrees of persistence and gives rise to the seeming contradiction that the divergence process indeed varies across time, space and species, even though major Amazonian rivers have acted as secondary barriers to gene flow in the focal taxa.

     
    more » « less
  4. Abstract

    Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensisMeerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocusFST = 0.32,FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) andFISincreased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring theseImpatienspopulations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.

     
    more » « less
  5. Abstract

    Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plantCentaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.

     
    more » « less