skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking
Abstract Due to their unique functionality, superomniphobic surfaces that display extreme repellency toward virtually any liquid, have a wide range of potential applications. However, to date, the mechanical durability of superomniphobic surfaces remains a major obstacle that prevents their practical deployment. In this work, a two‐layer design strategy is developed to fabricate superomniphobic surfaces with improved durability via synergistic effect of interconnected hierarchical porous texture and micro/nanomechanical interlocking. The improved mechanical robustness of these surfaces is assessed through water shear test, ultrasonic washing test, blade scratching test, and Taber abrasion test.  more » « less
Award ID(s):
1947454
PAR ID:
10376564
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
6
Issue:
18
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Paper‐based superomniphobic surfaces are of great interest because paper is flexible, inexpensive, lightweight, breathable, and recyclable. Prior reports on paper‐based superomniphobic surfaces have failed to demonstrate high mobility with low surface tension liquids. In order to overcome this issue, in this work, superomniphobic papers are developed through growth of nanofilaments on inherent microfibers of papers without noticeably altering their microscale features (i.e., diameter and distance of the microfibers). These superomniphobic papers display very low roll‐off angle, indicative of ultra‐high droplet mobility, even with low surface tension liquids. Here, a facile method is also developed to control the motion and adhesion of the droplets on the superomniphobic paper. Utilizing such liquid mobility in a controlled manner on these superomniphobic papers, a simple on‐paper pH sensor is fabricated. It is anticipated that this on‐paper, simple, and rapid detection methodology can also be extended to the colorimetric sensing of protein and chemical assays. Further, these superomniphobic papers have potential applications in water–oil separation and enhanced weight‐bearing capacity. 
    more » « less
  2. Icephobic surfaces have daily critical impact on human lives in cold climates, with uses ranging from aviation systems and infrastructure to energy systems. However, creation of these surfaces for low-temperature applications remains difficult. Non-wetting, liquid-infused and hydrated surfaces have inspired routes for development of icephobic surfaces. However, high ice adhesion strength (∼20–100 kPa) and subsequent ice accretion, low long-term mechanical and environmental durability and high production cost have restricted their applications. Here, we lay the fundamentals of a new physical concept called stress-localization to develop icephobic surfaces with ice adhesion in the order of 1 kPa and exceptional mechanical, chemical and environmental durability. 
    more » « less
  3. Abstract Glass fiber reinforced polymer (GFRP) bars are composite materials that, in the field of civil engineering, serve as an alternative for the internal steel reinforcement of concrete structures. The study and development of these material systems in construction are relatively new, requiring targeted research and development to achieve greater adoption. In this scenario, research and standardization play crucial roles. The development and publication of new test methods, material specifications, and other standards, as well as the improvement of the existing ones, allow for quality control, validation, and acceptance. One of these improvements is the evaluation of precision statements of the different ASTM standards related to the physical-mechanical and durability characterization of GFRP bars used as internal concrete reinforcement. Precision refers to how closely test results obtained under specific conditions agree with each other. A precision statement allows potential users to assess the test method’s general suitability for their intended applications. It should provide guidance on the type of variation that can be expected between test results when the method is used in one or more competent laboratories. The present study aims to enhance the precision statements in ASTM standards pertaining to the geometric, material, mechanical, and physical properties required for GFRP bars in concrete reinforcement, including ASTM standards like ASTM D7205M-21, Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM D7617M-11(2017), Standard Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars; and ASTM D7913M-14(2020), Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing, while in accordance with the statistical procedures and calculation methods outlined in ASTM Practices ASTM E177-20, Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, and ASTM E691-22, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method. 
    more » « less
  4. Abstract Seventy percent of global electricity is generated by steam-cycle power plants. A hydrophobic condenser surface within these plants could boost overall cycle efficiency by 2%. In 2022, this enhancement equates to an additional electrical power generation of 1000 TWh annually, or 83% of the global solar electricity production. Furthermore, this efficiency increase reduces CO2emissions by 460 million tons /year with a decreased use of 2 trillion gallons of cooling water per year. However, the main challenge with hydrophobic surfaces is their poor durability. Here, we show that solid microscale-thick fluorinated diamond-like carbon (F-DLC) possesses mechanical and thermal properties that ensure durability in moist, abrasive, and thermally harsh conditions. The F-DLC coating achieves this without relying on atmospheric interactions, infused lubricants, self-healing strategies, or sacrificial surface designs. Through tailored substrate adhesion and multilayer deposition, we develop a pinhole-free F-DLC coating with low surface energy and comparable Young’s modulus to metals. In a three-year steam condensation experiment, the F-DLC coating maintains hydrophobicity, resulting in sustained and improved dropwise condensation on multiple metallic substrates. Our findings provide a promising solution to hydrophobic material fragility and can enhance the sustainability of renewable and non-renewable energy sources. 
    more » « less
  5. Protein self-assembly plays a vital role in a myriad of biological functions and in the construction of biomaterials. Although the physical association underlying these assemblies offers high specificity, the advantage often compromises the overall durability of protein complexes. To address this challenge, we propose a novel strategy that reinforces the molecular self-assembly of protein complexes mediated by their ligand. Known for their robust noncovalent interactions with biotin, streptavidin (SAv) tetramers are examined to understand how the ligand influences the mechanical strength of protein complexes at the nanoscale and macroscale, employing atomic force microscopy-based single-molecule force spectroscopy, rheology, and bioerosion analysis. Our study reveals that biotin binding enhances the mechanical strength of individual SAv tetramers at the nanoscale. This enhancement translates into improved shear elasticity and reduced bioerosion rates when SAv tetramers are utilized as cross-linking junctions within hydrogel. This approach, which enhances the mechanical strength of protein-based materials without compromising specificity, is expected to open new avenues for advanced biotechnological applications, including self-assembled, robust biomimetic scaffolds and soft robotics. 
    more » « less