skip to main content


Title: Si-based self-programming neuromorphic integrated circuits for intelligent morphing wings

Unlike artificial intelligent systems based on computers, which must be programmed for specific tasks, the human brain can learn in real-time to create new tactics and adapt to complex, unpredictable environments. Computers embedded in artificial intelligent systems can execute arbitrary inference algorithms capable of outperforming humans at specific tasks. However, without real-time self-programming functionality, they must be preprogrammed by humans and will likely to fail in unpredictable environments beyond their preprogrammed domains. In this work, a Si-based synaptic resistor (synstor) was developed by integrating Al2Ox/TaOymaterials to emulate biological synapses. The synstors were characterized, and their operation mechanism based on the charge stored in the oxygen vacancies in the Al2Oxmaterial was simulated and analyzed, to understand the inference, learning, and memory functions of the synstors. A self-programming neuromorphic integrated circuit (SNIC) based on synstors was fabricated to execute inference and learning algorithms concurrently in real-time with an energy efficiency more than six-orders of magnitudes higher than those of standard digital computers. The SNIC dynamically modified its algorithm in a real-time learning process to control a morphing wing, thus successfully improving its lift-to-drag force ratio and recovering the wing from stall in complex aerodynamic environments. The synaptic resistor circuits can potentially circumvent the fundamental limitations of computers, thus providing a platform analogous to neurobiological network with real-time self-programming functionality for artificial intelligent systems.

 
more » « less
NSF-PAR ID:
10376577
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;   « less
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Composite Materials
Volume:
56
Issue:
30
ISSN:
0021-9983
Page Range / eLocation ID:
p. 4561-4575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuromorphic computing systems execute machine learning tasks designed with spiking neural networks. These systems are embracing non-volatile memory to implement high-density and low-energy synaptic storage. Elevated voltages and currents needed to operate non-volatile memories cause aging of CMOS-based transistors in each neuron and synapse circuit in the hardware, drifting the transistor’s parameters from their nominal values. If these circuits are used continuously for too long, the parameter drifts cannot be reversed, resulting in permanent degradation of circuit performance over time, eventually leading to hardware faults. Aggressive device scaling increases power density and temperature, which further accelerates the aging, challenging the reliable operation of neuromorphic systems. Existing reliability-oriented techniques periodically de-stress all neuron and synapse circuits in the hardware at fixed intervals, assuming worst-case operating conditions, without actually tracking their aging at run-time. To de-stress these circuits, normal operation must be interrupted, which introduces latency in spike generation and propagation, impacting the inter-spike interval and hence, performance (e.g., accuracy). We observe that in contrast to long-term aging, which permanently damages the hardware, short-term aging in scaled CMOS transistors is mostly due to bias temperature instability. The latter is heavily workload-dependent and, more importantly, partially reversible. We propose a new architectural technique to mitigate the aging-related reliability problems in neuromorphic systems by designing an intelligent run-time manager (NCRTM), which dynamically de-stresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors during the execution of machine learning workloads, with the objective of meeting a reliability target. NCRTM de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing the performance impact by scheduling de-stress operations off the critical path. We evaluate NCRTM with state-of-the-art machine learning workloads on a neuromorphic hardware. Our results demonstrate that NCRTM significantly improves the reliability of neuromorphic hardware, with marginal impact on performance. 
    more » « less
  2. Neuromorphic computing, commonly understood as a computing approach built upon neurons, synapses, and their dynamics, as opposed to Boolean gates, is gaining large mindshare due to its direct application in solving current and future computing technological problems, such as smart sensing, smart devices, self-hosted and self-contained devices, artificial intelligence (AI) applications, etc. In a largely software-defined implementation of neuromorphic computing, it is possible to throw enormous computational power or optimize models and networks depending on the specific nature of the computational tasks. However, a hardware-based approach needs the identification of well-suited neuronal and synaptic models to obtain high functional and energy efficiency, which is a prime concern in size, weight, and power (SWaP) constrained environments. In this work, we perform a study on the characteristics of hardware neuron models (namely, inference errors, generalizability and robustness, practical implementability, and memory capacity) that have been proposed and demonstrated using a plethora of emerging nano-materials technology-based physical devices, to quantify the performance of such neurons on certain classes of problems that are of great importance in real-time signal processing like tasks in the context of reservoir computing. We find that the answer on which neuron to use for what applications depends on the particulars of the application requirements and constraints themselves, i.e., we need not only a hammer but all sorts of tools in our tool chest for high efficiency and quality neuromorphic computing.

     
    more » « less
  3. Abstract

    Future robots and intelligent systems will autonomously navigate in unstructured environments and closely collaborate with humans; integrated with our bodies and minds, they will allow us to surpass our physical limitations. Traditional robots are mostly built from rigid, metallic components and electromagnetic motors, which make them heavy, expensive, unsafe near people, and ill‐suited for unpredictable environments. By contrast, biological organisms make extensive use of soft materials and radically outperform robots in terms of dexterity, agility, and adaptability. Particularly, natural muscle—a masterpiece of evolution—has long inspired researchers to create “artificial muscles” in an attempt to replicate its versatility, seamless integration with sensing, and ability to self‐heal. To date, natural muscle remains unmatched in all‐round performance, but rapid advancements in soft robotics have brought viable alternatives closer than ever. Herein, the recent development of hydraulically amplified self‐healing electrostatic (HASEL) actuators, a new class of high‐performance, self‐sensing artificial muscles that couple electrostatic and hydraulic forces to achieve diverse modes of actuation, is discussed; current designs match or exceed natural muscle in many metrics. Research on materials, designs, fabrication, modeling, and control systems for HASEL actuators is detailed. In each area, research opportunities are identified, which together lays out a roadmap for actuators with drastically improved performance. With their unique versatility and wide potential for further improvement, HASEL actuators are poised to play an important role in a paradigm shift that fundamentally challenges the current limitations of robotic hardware toward future intelligent systems that replicate the vast capabilities of biological organisms.

     
    more » « less
  4. psychology, and cognition has progressed sufficiently that the technology exists to develop a mutually beneficial exchange of information between a human and an AI. Dubbed “AI Symbiosis,” this process enables positive feedback between humans and adaptive computer algorithms in which both human and AI would “learn” how to perform tasks more efficiently than either could alone. Several new technologies and inventions al-low a vast array of augmented input and/or output between humans and AI, in-cluding mental activity wirelessly operating computers, manipulation of targeted neurons with or without implants, non-invasive, surface-level implants the size of a coin transmitting real-time neural activity of senses, real-time video feed of human mental images, and estimation of thoughts and emotions. A research pro-ject is planned to study students’ divided attention when they are learning content in on-line environments. The research will target eye-tracking, click timing, and task performance data to determine the levels of impact divided attention has on student learning. We believe that this line of research will also inform best prac-tices in on-line instructional settings. 
    more » « less
  5. Cyber-Physical-Human Systems (CPHS) interconnect humans, physical plants and cyber infrastructure across space and time. Industrial processes, electromechanical systems operations and medical diagnosis are some examples where one can see the intersection of humans, physical and cyber components. Emergence of Artificial Intelligence (AI) based computational models, controllers and decision support engines have improved the efficiency and cost effectiveness of such systems and processes. These CPHS typically involve a collaborative decision environment, comprising of AI-based models and human experts. Active Learning (AL) is a category of AI algorithms which aims to learn an efficient decision model by combining domain expertise of the human expert and computational capabilities of the AI model. Given the indispensable role of humans and lack of understanding about human behavior in collaborative decision environments, modeling and prediction of behavioral biases is a critical need. This paper, for the first time, introduces different behavioral biases within an AL context and investigates their impacts on the performance of AL strategies. The modelling of behavioral biases is demonstrated using experiments conducted on a real-world pancreatic cancer dataset. It is observed that classification accuracy of the decision model reduces by at least 20% in case of all the behavioral biases. 
    more » « less