Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape‐scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner‐city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity‐nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine‐fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.
Rich pollinator assemblages are documented in some cities despite habitat fragmentation and degradation, suggesting that urban areas have potential as pollinator refuges. To inform urban bee conservation, we assessed local‐ and landscape‐scale drivers of bee community composition and foraging within vacant lots of Cleveland, Ohio, USA. Cleveland is a shrinking city, a type of urban area that has an over‐abundance of vacated greenspaces as a result of population loss and subsequent demolition of abandoned infrastructure. As such, Cleveland represents over 350 post‐industrial cities worldwide that are all promising locations for bee conservation. Across a network of 56 residential vacant lots (each ~30 m × 12 m), we established seven unique habitats, including seeded native prairies, to investigate how vegetation management and landscape context at a 1,500 m radius influenced urban bee communities. We assessed the distribution of several bee functional traits, diversity and abundance with pan and malaise traps. Foraging frequency was determined with plant–pollinator interaction networks derived from vacuum collections of bees at flowers. We observed higher bee richness and increased abundance of smaller sized bees as the size of surrounding greenspace patches increased within a 1,500 m radius landscape buffer. Within habitats, seeded treatments had no effect on bees but greater plant biomass and shorter vegetation were correlated with increased bee richness and abundance. Plant–pollinator interaction networks were dominated by spontaneous non‐native vegetation, illustrating that this forage supports urban bees.
- PAR ID:
- 10376604
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 58
- Issue:
- 1
- ISSN:
- 0021-8901
- Page Range / eLocation ID:
- p. 58-69
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Urbanization is a key contributor to biodiversity loss, but evidence is mounting that cities can support rich arthropod communities, including rare and threatened species. Furthermore, greenspace is growing within hundreds of “shrinking cities” that have lost population resulting in a need to demolish an overabundance of infrastructure creating vacant land. Efforts are underway to transform vacant lots, often viewed as blighted areas, into habitats that promote biodiversity and generate ecosystem services, such as urban agroecosystems. To understand how reconfiguring these greenspaces might influence species conservation, elucidation of the factors that drive the distribution of an urban species pool is needed. In particular, the importance of species interactions in structuring urban communities is poorly understood. We tested hypotheses that (1) greater breadth of prey captured by web‐building spiders and reduced overlap of prey capture among individuals facilitates the conservation of genera richness and abundance and (2) heterogeneity within a greenspace patch facilitates enhanced dietary niche breadth and greater resource partitioning. In 2013 and 2014, the abundance, breadth and degree of overlap in prey capture of sheet web spiders (Linyphiidae) was measured using web mimic traps at 160 microsites (0.25 m2) situated in four urban vacant lots and four urban farms in the city of Cleveland, Ohio, USA. Within a subset of 40 microsites, we used vacuum sampling and hand collection to measure the abundance and genera richness of Linyphiidae. Spider richness and abundance were significantly reduced within urban farms relative to vacant lots. The distribution of spiders and prey was explained by habitat structure, with microsites dominated by tall grasses and flowering plants, with a high bloom abundance and richness, supporting greater prey capture and a higher genera richness and abundance of spiders. In 2014, web capture overlap was significantly greater within microsites dominated by bare ground. These findings illustrate that urban greenspace conservation efforts that focus on reducing bare ground and incorporating a diversity of grasses and flowering plant species can promote linyphiid spiders, potentially by relaxing exploitative competition for shared prey.
-
Given widespread concerns over human-mediated bee declines in abundance and species richness, conservation efforts are increasingly focused on maintaining natural habitats to support bee diversity in otherwise resource-poor environments. However, natural habitat patches can vary in composition, impacting landscape-level heterogeneity and affecting plant-pollinator interactions. Plant-pollinator networks, especially those based on pollen loads, can provide valuable insight into mutualistic relationships, such as revealing the degree of pollination specialization in a community; yet, local and landscape drivers of these network indices remain understudied within urbanizing landscapes. Beyond networks, analyzing pollen collection can reveal key information about species-level pollen preferences, providing plant restoration information for urban ecosystems. Through bee collection, vegetation surveys, and pollen load identification across ~350 km of urban habitat, we studied the impact of local and landscape-level management on plant-pollinator networks. We also quantified pollinator preferences for plants within urban grasslands. Bees exhibited higher foraging specialization with increasing habitat heterogeneity and visited fewer flowering species (decreased generality) with increasing semi-natural habitat cover. We also found strong pollinator species-specific flower foraging preferences, particularly for Asteraceae plants. We posit that maintaining native forbs and supporting landscape-level natural habitat cover and heterogeneity can provide pollinators with critical food resources across urbanizing ecosystems.
-
Evidence of exploitative competition between honey bees and native bees in two California landscapes
Abstract Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey bees
Apis mellifera (L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.
We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.
We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.
Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.
-
The harsh geophysical template characterized by the urban environment combined with people’s choices has led ecologists to invoke environmental filtering as the main ecological phenomena explaining urban biodiversity patterns. Yet, dispersal is often overlooked as a driving factor, especially on expanding vacant land. Does overcoming dispersal limitation by seeding native species in urban environments and increasing the functional or phylogenetic diversity of the seeding pool increase native plant species diversity and abundance in urban vacant land? We took an experimental approach to learn how different dimensions of plant biodiversity within an augmented regional species pool, via seed additions, can explain variation in community structure over a 3-year period. Vacant lots were cleared and manipulated with seeding treatments of high or low phylogenetic and functional diversities from a pool of 28 native species. Establishment success, total native cover and native species richness were followed and compared to cleared, unseeded control lots as well as un-manipulated lots. Seeding increased native plant abundance and richness over uncleared plots, as well as cleared and unseeded control plots. Phylogenetically diverse seed mixtures had greater establishment success than mixtures composed of closely related species. Diversifying seed mixtures increased the likelihood of including species that are better able to establish on vacant land. However, there were no differences in varying levels of either functional or phylogenetic diversity. Augmenting the regional species pool via diverse seed mixtures can enhance native plant cover and richness under the harsh environmental conditions conferred by land abandonment.more » « less