skip to main content


Title: Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow
To understand how SARS-CoV-2 spreads indoors, in this study bovine coronavirus was aerosolized as simulant into a plexiglass chamber with coupons of metal, wood and plastic surfaces. After aerosolization, chamber and coupon surfaces were swiped to quantify the virus concentrations using quantitative polymerase chain reaction (qPCR). Bio-layer interferometry showed stronger virus association on plastic and metal surfaces, however, higher dissociation from wood in 80% relative humidity. Virus aerosols were collected with the 100 L/min wetted wall cyclone and the 50 L/min MD8 air sampler and quantitated by qPCR. To monitor the effect of the ventilation on the virus movement, PRD1 bacteriophages as virus simulants were disseminated in a ¾ scale air-conditioned hospital test room with twelve PM2.5 samplers at 15 L/min. Higher virus concentrations were detected above the patient’s head and near the foot of the bed with the air inlet on the ceiling above, exhaust bottom left on the wall. Based on room layout, air measurements and bioaerosol collections computational flow models were created to visualize the movement of the virus in the room airflow. The addition of air curtain at the door minimized virus concentration while having the inlet and exhaust on the ceiling decreased overall aerosol concentration. Controlled laboratory experiments were conducted in a plexiglass chamber to gain more insight into the fundamental behavior of aerosolized SARS-CoV-2 and understand its fate and transport in the ambient environment of the hospital room.  more » « less
Award ID(s):
2034048
NSF-PAR ID:
10376611
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Viruses
Volume:
14
Issue:
3
ISSN:
1999-4915
Page Range / eLocation ID:
616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tiina Reponen (Ed.)
    Airborne murine coronavirus was assessed for its sensitivity to the vapors of chemicals commonly used to disinfect indoor surfaces. As a model for the chemical sensitivity of airborne SARS-CoV-2, the infectious potential of airborne Mouse Hepatitis Virus (MHV) was tracked in the presence of the following pure chemical vapors, each of which was below its permissible exposure limit (PEL) as regulated by the US National Institute of Occupational Safety and Health (NIOSH): <50ppmv for glycol; <1ppmv for HOCl; and <1ppmv for H2O2. Along with its growth media, infectious MHV was aerosolized in a particle size distribution between 0.5 l/m and 3.2 l/m into a sealed, dark, 9m3 chamber maintained at 22 C and 60% RH, including levels of chemical vapors maintained below their respective PELs. As judged by the TCID50 of airborne MHV collected by condensation, this airborne virus was rapidly inactivated by HOCl vapor, incurring an average of 99% infectious potential loss after 16 ± 4 min exposure to <0.2 ppmv HOCl. Airborne MHV responded with a 99% loss of infectious potential in 38 ± 10 min of exposure to <0.9ppmv H2O2; and, a 99% loss of infectious potential in 33 ± 15 min when exposed to a gas-phase dipropylene glycol blend <20ppmv as TVOC. The juxtaposition of quantitative RT-PCR and TCID50 responses suggest that even low levels of gas-phase HOCl exposures can damage the genome of airborne coronavirus in relatively short time frames (c.a. < 5 mins). 
    more » « less
  2. Elkins, Christopher A. (Ed.)
    ABSTRACT Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 ( P  < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites. 
    more » « less
  3. Abstract

    An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans’ respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 μm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors.

     
    more » « less
  4. Abstract Background

    SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting.

    Methods

    We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model.

    Results

    Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genusRothiastrongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic.

    Conclusions

    These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment.

     
    more » « less
  5. null (Ed.)
    Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers. 
    more » « less