skip to main content


Title: Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics
Abstract

Polymerase Chain Reaction (PCR) is an essential method in molecular diagnostics and life sciences. PCR requires thermal cycling for heating the DNA for strand separation and cooling it for replication. The process uses a specialized hardware and exposes biomolecules to temperatures above 95 °C. Here, we engineer a PcrA M6 helicase with enhanced speed and processivity to replace the heating step by enzymatic DNA unwinding while retaining desired PCR characteristics. We name this isothermal amplification method SHARP (SSB-Helicase Assisted Rapid PCR) because it uses the engineered helicase and single-stranded DNA binding protein (SSB) in addition to standard PCR reagents. SHARP can generate amplicons with lengths of up to 6000 base pairs. SHARP can produce functional DNA, a plasmid that imparts cells with antibiotic resistance, and can amplify specific fragments from genomic DNA of human cells. We further use SHARP to assess the outcome of CRISPR-Cas9 editing at endogenous genomic sites.

 
more » « less
NSF-PAR ID:
10376657
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R‐loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R‐loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R‐loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction betweenEscherichia coliRNase HI and the single‐stranded DNA‐binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation ofrnhAto encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media‐dependent slow‐growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R‐loop accumulation enhance or suppress, respectively, the growth phenotype ofrnhAK60E rep::kanstrains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R‐loops that block DNA replication.

     
    more » « less
  2. Abstract

    In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.

     
    more » « less
  3. Abstract

    In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs. Here, RecG binding to SSB and SSB peptides was measured in vitro and the RecG/SSB interface was identified. The results show that RecG binds directly and specifically to the SSB-Ct, and not the IDL, through an evolutionarily conserved binding site in the RecG helicase domain. Mutations that block RecG binding to SSB sensitize E. coli to DNA damaging agents and induce the SOS DNA-damage response, indicating formation of the RecG/SSB complex is important in vivo. The broader role of the SSB IDL is also investigated. E. coli ssb mutant strains encoding SSB IDL deletion variants lacking all PxxP motifs retain wildtype growth and DNA repair properties, demonstrating that the SSB PxxP motifs are not major contributors to SSB cellular functions.

     
    more » « less
  4. Abstract

    Avian malaria and related haemosporidians (Plasmodium,[Para]HaemoproteusandLeucocytoozoon) represent an exciting multihost, multiparasite system in ecology and evolution. Global research in this field accelerated after the publication in 2000 of PCR protocols to sequence a haemosporidian mitochondrial (mtDNA) barcode and the development in 2009 of an open‐access database to document the geographic and host ranges of parasite mtDNA haplotypes. Isolating haemosporidian nuclear DNA from bird hosts, however, has been technically challenging, slowing the transition to genomic‐scale sequencing techniques. We extend a recently developed sequence capture method to obtain hundreds of haemosporidian nuclear loci from wild bird samples, which typically have low levels of infection, or parasitemia. We tested 51 infected birds from Peru and New Mexico and evaluated locus recovery in light of variation in parasitemia, divergence from reference sequences and pooling strategies. Our method was successful for samples with parasitemia as low as ~0.02% (2 of 10,000 blood cells infected) and mtDNA divergence as high as 15.9% (oneLeucocytozoonsample), and using the most cost‐effective pooling strategy tested. Phylogenetic relationships estimated with >300 nuclear loci were well resolved, providing substantial improvement over the mtDNA barcode. We provide protocols for sample preparation and sequence capture including custom probe sequences and describe our bioinformatics pipeline usingatram2.0,phyluceand custom Perl/Python scripts. This approach can be applied to thousands of avian samples that have already been found to have haemosporidian infections of at least moderate intensity, greatly improving our understanding of parasite speciation, biogeography and evolutionary dynamics.

     
    more » « less
  5. Abstract

    Hybridization capture approaches allow targeted high-throughput sequencing analysis at reduced costs compared to shotgun sequencing. Hybridization capture is particularly useful in analyses of genomic data from ancient, environmental, and forensic samples, where target content is low, DNA is fragmented and multiplex PCR or other targeted approaches often fail. Here, we describe a DNA bait synthesis approach for hybridization capture that we call Circular Nucleic acid Enrichment Reagent, or CNER (pronounced ‘snare’). The CNER method uses rolling-circle amplification followed by restriction digestion to discretize microgram quantities of hybridization probes. We demonstrate the utility of the CNER method by generating probes for a panel of 23 771 known sites of single nucleotide polymorphism in the horse genome. Using these probes, we capture and sequence from a panel of ten ancient horse DNA libraries, comparing CNER capture efficiency to a commercially available approach. With about one million read pairs per sample, CNERs captured more targets (90.5% versus 66.5%) at greater mean depth than an alternative commercial approach.

     
    more » « less