skip to main content


Title: Leaf margins in a deciduous lineage from the Greater Cape Floristic Region track climate in unexpected directions
Premise

The functional significance of leaf margins has long been debated. In this study, we explore influences of climate, leaf lobing, woodiness, and shared evolutionary history on two leaf margin traits within the genusPelargonium.

Methods

Leaves from 454 populations ofPelargonium(161 species) were collected in the Greater Cape Floristic Region and scored for tooth presence/absence and degree of lobing. Tooth density (number of teeth per interior perimeter distance) was calculated for a subset of these. We compared five hypotheses to explain tooth presence and density using mixed effect models.

Results

Tooth presence/absence was best predicted by the interaction of leaf lobing and mean annual temperature (MAT), but often in patterns opposite those previously reported: species were more likely to be toothed with warmer temperatures, particularly for unlobed and highly lobed leaves. In contrast, tooth density was best predicted by the interaction ofMATand the season of most rain; density declines with temperature as consistent with expectations, but only in winter‐rain dominated areas. Woody and nonwoody species withinPelargoniumhave similar associations between tooth presence/absence andMAT, contrary to the expectation that patterns within nonwoody species would be insignificant.

Conclusions

We concludePelargoniumleaf margins show predictable responses to climate, but these responses are complex and can contradict those found for global patterns across plant communities.

 
more » « less
PAR ID:
10376687
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
5
ISSN:
0002-9122
Page Range / eLocation ID:
p. 735-748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Plant lipid biomarkers, such as plant waxes and terpenoids, and the stable isotopic composition of bulk leaves are widely used in both modern and paleoclimate studies for tracking vegetation and climate. However, the effects of different drying methods on the preservation of plant lipid biomarkers and the stable isotopic compositions of leaves are less explored. Here, we investigated various drying methods for the measurement of plant lipid concentrations and bulk leaf isotopic compositions.

    Methods

    Leaves from four tree species (Acer rubrum,Pinus sylvestris,Platanus occidentalis, andTaxodium distichum) were collected and dried using air, an oven, a freeze‐dryer, and a microwave. We compared concentrations of leaf waxes and terpenoids and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of leaves by different drying methods.

    Results

    The air, oven, freeze‐dryer, and microwave drying methods did not affect lipid concentrations significantly, and only a few homologues differed (38.1% or 41.8 μg/g on average) possibly due to biological variations or enhanced extraction efficiencies. The δ13C values were not affected by drying methods, whereas the δ15N values in oven‐dried leaves in some species were higher by 0.2–0.7‰ than those obtained by other methods. Though small, we attribute these patterns to loss of leaf compounds with lower isotope ratios during oven‐drying.

    Conclusions

    Based on our results, each drying technique yielded equivalent results for all plant wax and terpenoid concentrations and bulk leaf δ13C values; however, oven‐drying modified the δ15N values.

     
    more » « less
  2. Premise

    Morphometric analysis is a common approach for comparing and categorizing botanical samples; however, completing a suite of analyses using existing tools may require a multi‐stage, multi‐program process. To facilitate streamlined analysis within a single program, Morphological Analysis of Size and Shape (MASS) for leaves was developed. Its utility is demonstrated using exemplar leaf samples fromAcer saccharum,Malus domestica, andLithospermum.

    Methods

    Exemplar samples were obtained from across a single tree (Acer saccharum), three trees in the same species (Malus domestica), and online, digitized herbarium specimens (Lithospermum).MASSwas used to complete simple geometric measurements of samples, such as length and area, as well as geometric morphological analyses including elliptical Fourier and Procrustes analyses. Principal component analysis (PCA) of data was also completed within the same program.

    Results

    MASSis capable of making desired measurements and analyzing traditional morphometric data as well as landmark and outline data.

    Discussion

    UsingMASS, differences were observed among leaves of the three studied taxa, but only inMalus domesticawere differences statistically significant or correlated with other morphological features. In the future,MASScould be applied for analysis of other two‐dimensional organs and structures.MASSis available for download athttps://github.com/gillianlynnryan/MASS.

     
    more » « less
  3. Abstract

    Planar structures dramatically increase the surface‐area‐to‐volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among threeSansivieriaspecies (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar‐leaf speciesSansevieria subspicataandSansevieria trifasciataand compared these with expression patterns within the cylindrically leavedSansevieria cylindrica. TwoYABBYfamily genes, homologs ofFILAMENTOUS FLOWERandDROOPING LEAF, are overexpressed in the center leaf tissue in the planar‐leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water‐storage tissue and enhances resistance to aridity. This suggests that the cylindrical‐leaf inS. cylindricais analogous to the central leaf tissue in the planar‐leaf species. Furthermore, the congruence of the expression patterns of theseYABBYgenes inSansevieriawith expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox.

     
    more » « less
  4. Abstract Questions

    What are the primary biotic and abiotic factors driving composition and abundance of naturally regenerated tree seedlings across forest landscapes of Maine? Do seedling species richness (SR) and density (SD) decrease with improved growing conditions (climate and soil), but increase with increased diversity of overstorey composition and structure? Does partial harvesting disproportionately favour relative dominance of shade‐intolerant hardwoods (PIHD) over shade‐tolerant softwoods (PTSD)?

    Location

    Forest landscapes across the diverse eco‐regions and forest types of Maine,USA.

    Methods

    This study usedUSDAForest Service Forest Inventory Analysis permanent plots (n = 10 842), measured every 5 yr since 1999. The best models for each response variable (SR,SD,PIHDandPTSD) were developed based onAICand biological interpretability, while considering 35 potential explanatory variables incorporating climate, soil, site productivity, overstorey structure and composition, and past harvesting.

    Results

    Mean annual temperature was the most important abiotic factor, whereas overstorey tree size diversity was the most important biotic factor forSRandSD. Both mean annual temperature and overstorey tree size diversity had a curvilinear relationship withSRandSD. Average overstorey shade tolerance and percentage tolerant softwood basal area in the overstorey were the top predictor variables ofPIHDandPTSD,respectively. Partial harvesting favouredPIHDbut notPTSD.

    Conclusions

    This is one of the first studies to comprehensively evaluate a number of factors influencing naturally established tree seedlings at a broad landscape scale in the Northern Forest region of the easternUSAand Canada. Despite limitations associated with relatively small plot size, large seedling size class and lack of direct measurements of light, water and nutrients, this study documents the influence of these factors amid high variability associated with patterns of natural regeneration. The curvilinear relationship between mean annual temperature withSRandSDsupports the argument that species richness and abundance usually have unimodal relationships with productivity indicators, whereas the curvilinear relationship between overstorey tree size diversity andSRandSDsuggest that moderate overstorey diversity incorporates multiple species as well as higher seedling individuals.

     
    more » « less
  5. Premise of the Study

    Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genusLachemilla(Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed.

    Methods

    Here we usedPCRtarget enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr)DNAcistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species ofLachemillaand to explore the allopolyploid origin of species in this group.

    Key Results

    We were able to identify multiple nrDNAribotypes and establish clear evidence of allopolyploidy in 33 species ofLachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNAphylogeny, we identified that the monotypic genusFarinopsisis the sister group ofLachemillaand allied genera within subtribe Fragariinae.

    Conclusions

    Our study demonstrates the utility of the nuclear ribosomalDNAcistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.

     
    more » « less