skip to main content


Title: Resisting and assisting engagement with public welfare in engineering education
Abstract Background

Increasing engineering students' engagement with public welfare is central to promoting ethical responsibility among engineers and enhancing engineers' capacity to serve the public good. However, little research has investigated how student experience attempts to increase engagement with public welfare concerns.

Purpose/Hypothesis

This study identifies and analyzes the challenges facing efforts to increase engineering students' engagement with the social and ethical implications of their work through a study of students' experiences at two engineering programs that emphasize public welfare engagement.

Design/Methods

We conducted interviews with engineering students (n= 26) and ethnographic observations of program events, classes, presentations, and social groups (n= 60) at two engineering programs that focus on engagement with public welfare and foreground learning about the social context and social impacts of engineering. We analyzed these data to identify areas in which students experienced challenges integrating considerations of public welfare into their work.

Results

We found that four main areas where engineering students experienced difficulty engaging with considerations of public welfare: (a) defining and defending their identities as engineers; (b) justifying the value of nontechnical work and relevance to engineering; (c) redefining engineering expertise and integrating community knowledge into projects; and (d) addressing ambiguous questions and ethics.

Conclusions

This work contributes to knowledge about the barriers to increasing students' engagement with issues of public welfare, even when programs encourage such engagement. These findings are relevant to broader efforts to increase concerns for ethics, social responsibility, and public welfare among engineers.

 
more » « less
Award ID(s):
1636349 1636383
NSF-PAR ID:
10376690
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
109
Issue:
3
ISSN:
1069-4730
Page Range / eLocation ID:
p. 491-507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  2. As the field of engineering faces looming societal issues, it becomes particularly important to foster more “holistic engineers” with systems-thinking skills and an understanding of the macro-ethical impacts of their work (Canny and Bielefeldt, 2015) Macro-ethics here refers to the collective social responsibility of engineers as a profession, as opposed to micro-ethics, which concern activities within the profession (Herkert, 2005). However, college students studying engineering in the United States exhibit a decline in concern for public welfare over the course of their education (Cech, 2014) as well as a tendency to orient to micro-ethical issues over macro-ethical issues (Schiff et al, 2020). Scholars attribute these trends to ideologies pervasive in engineering spaces, such as depoliticization of engineering practice, technocracy, and meritocracy (Cech, 2014; Slaton, 2015). While Cech (2014) argues these status quo ideologies in engineering are maintained by a “culture of disengagement” that decreases interest in public welfare, Radoff et al. (2022) find indications that additional factors contribute to engaged students’ reproduction of such ideologies. They find, for example, instances of students in reproducing dehumanizing narratives regarding low-income communities, despite their enrollment in a voluntary program premised on cultivating socially responsible STEM professionals. This finding suggests that even students who remain “engaged” to some degree can reproduce status quo ideologies which Cech (2014) attributes to disengagement. One explanation as to why a macro-ethically “engaged” student may fail to attend to the social aspects of design follows a deficit narrative: a lack of knowledge or ability. We see this assumption in comparisons of students’ and experts’ design processes, where the areas in which students behave differently than experts are interpreted as areas that require additional instruction on how to behave more like the experts (Atman et al., 2008). This presupposition of students’ lacking knowledge or skills, however, backgrounds contextual or interactional factors. Philip et al. (2018) challenges such assumptions in their analysis of a classroom discussion on the ethics of drone warfare, which exemplifies students’ convergence to American nationalism, but with the framing that this convergence is interactionally created, rather than the result of individual students’ stable, dogmatic beliefs. However, because their analysis is limited to the scope of a single class discussion, the extent to which students’ performance is situated in said class remains unclear. In this paper, we attempt to understand the ways in which students reproduce ideologies dominant in engineering, as well as the situated nature of students’ ideological orientations in collaborative work. We consider a case study focus group from Radoff et al. (2022) where students reasoned through a hypothetical design scenario about a grocery store. We show how, despite many opportunities where problematic status-quo narratives are momentarily challenged, the students generally reject the challenges, not by arguing against them, but by positioning them outside the scope of their work. Further, we show how these moments of rejection are tightly coupled with attempts to emulate the multinational technology company Amazon. Finally, we use additional data to illustrate the situatedness of one student’s performance, and theorize the influence of Amazon as a “strange attractor” in this student’s situated reasoning. 
    more » « less
  3. Emphasizing socio-political context in undergraduate engineering courses is a complex challenge for accredited American engineering programs as they strive to pivot towards a more equitable future. Teaching engineering problem solving by isolating the technical perspective is the dominant culture, and change has been slow and insufficient. Looking at the complex human circumstances in which engineered systems are situated has significant, and sometimes life saving, benefits. On the contrary, the common de-contextualized approach to teaching engineering has been shown to have significant impacts on how students behave as future engineers. Furthermore, eurocentric teaching practices have been documented as a contributor to the lack of gender and ethinic diversity in engineering. Re-contextualizing civil engineering courses has shown to increase students' motivation, sense of social responsibility, and agency. The ASCE Code of Ethics states that “Engineers … first and foremost, protect the health, safety, and welfare of the public,” a notion that was first added to the code in 1977. In recent years, some civil and environmental engineering (CEE) faculty members and programs have responded to this ethical imperative by re-contextualizing civil engineering education in relation to the communities (“the public”) the civil engineer is ethically obligated to protect and serve. To determine the extent of these efforts to re-introduce socio-technical context in CEE curricula, we are conducting a systematic review of the published literature. The objectives of this research are to document, synthesize, and amplify the work of these scholars and to encourage the community of CEE faculty to re-contextualize the knowledge and skills taught in the CEE curriculum. This paper describes the methodology, including search terms and sources examined, reports the preliminary results of the review, and synthesizes the preliminary findings. Future work will propose strategies and structures that could be adapted and employed by civil engineering faculty throughout the U.S. to 1) engage and retain students from groups that historically have been excluded from CEE and 2) better educate CEE students to engineer a more equitable and just future. 
    more » « less
  4. Emphasizing socio-political context in undergraduate engineering courses is a complex challenge for accredited American engineering programs as they strive to pivot towards a more equitable future. Teaching engineering problem solving by isolating the technical perspective is the dominant culture, and change has been slow and insufficient. Looking at the complex human circumstances in which engineered systems are situated has significant, and sometimes life saving, benefits. On the contrary, the common de-contextualized approach to teaching engineering has been shown to have significant impacts on how students behave as future engineers. Furthermore, eurocentric teaching practices have been documented as a contributor to the lack of gender and ethinic diversity in engineering. Re-contextualizing civil engineering courses has shown to increase students' motivation, sense of social responsibility, and agency. The ASCE Code of Ethics states that “Engineers … first and foremost, protect the health, safety, and welfare of the public,” a notion that was first added to the code in 1977. In recent years, some civil and environmental engineering (CEE) faculty members and programs have responded to this ethical imperative by re-contextualizing civil engineering education in relation to the communities (“the public”) the civil engineer is ethically obligated to protect and serve. To determine the extent of these efforts to re-introduce socio-technical context in CEE curricula, we are conducting a systematic review of the published literature. The objectives of this research are to document, synthesize, and amplify the work of these scholars and to encourage the community of CEE faculty to re-contextualize the knowledge and skills taught in the CEE curriculum. This paper describes the methodology, including search terms and sources examined, reports the preliminary results of the review, and synthesizes the preliminary findings. Future work will propose strategies and structures that could be adapted and employed by civil engineering faculty throughout the U.S. to 1) engage and retain students from groups that historically have been excluded from CEE and 2) better educate CEE students to engineer a more equitable and just future. 
    more » « less
  5. Emphasizing socio-political context in undergraduate engineering courses is a complex challenge for accredited American engineering programs as they strive to pivot towards a more equitable future. Teaching engineering problem solving by isolating the technical perspective is the dominant culture, and change has been slow and insufficient. Looking at the complex human circumstances in which engineered systems are situated has significant, and sometimes life saving, benefits. On the contrary, the common de-contextualized approach to teaching engineering has been shown to have significant impacts on how students behave as future engineers. Furthermore, eurocentric teaching practices have been documented as a contributor to the lack of gender and ethinic diversity in engineering. Re-contextualizing civil engineering courses has shown to increase students' motivation, sense of social responsibility, and agency. The ASCE Code of Ethics states that “Engineers … first and foremost, protect the health, safety, and welfare of the public,” a notion that was first added to the code in 1977. In recent years, some civil and environmental engineering (CEE) faculty members and programs have responded to this ethical imperative by re-contextualizing civil engineering education in relation to the communities (“the public”) the civil engineer is ethically obligated to protect and serve. To determine the extent of these efforts to re-introduce socio-technical context in CEE curricula, we are conducting a systematic review of the published literature. The objectives of this research are to document, synthesize, and amplify the work of these scholars and to encourage the community of CEE faculty to re-contextualize the knowledge and skills taught in the CEE curriculum. This paper describes the methodology, including search terms and sources examined, reports the preliminary results of the review, and synthesizes the preliminary findings. Future work will propose strategies and structures that could be adapted and employed by civil engineering faculty throughout the U.S. to 1) engage and retain students from groups that historically have been excluded from CEE and 2) better educate CEE students to engineer a more equitable and just future. 
    more » « less