Abstract Understanding species’ responses to upwelling may be especially important in light of ongoing environmental change. Upwelling frequency and intensity are expected to increase in the future, while ocean acidification and deoxygenation are expected to decrease the pH and dissolved oxygen (DO) of upwelled waters. However, the acute effects of a single upwelling event and the integrated effects of multiple upwelling events on marine organisms are poorly understood. Here, we use in situ measurements of pH, temperature, and DO to characterize the covariance of environmental conditions within upwelling‐dominated kelp forest ecosystems. We then test the effects of acute (0–3 days) and chronic (1–3 months) upwelling on the performance of two species of kelp forest grazers, the echinoderm,Mesocentrotus franciscanus, and the gastropod,Promartynia pulligo. We exposed organisms to static conditions in a regression design to determine the shape of the relationship between upwelling and performance and provide insights into the potential effects in a variable environment. We found that respiration, grazing, growth, and net calcification decline linearly with increasing upwelling intensity forM.francicanusover both acute and chronic timescales.Promartynia pulligoexhibited decreased respiration, grazing, and net calcification with increased upwelling intensity after chronic exposure, but we did not detect an effect over acute timescales or on growth after chronic exposure. Given the highly correlated nature of pH, temperature, and DO in the California Current, our results suggest the relationship between upwelling intensity and growth in the 3‐month trial could potentially be used to estimate growth integrated over long‐term dynamic oceanographic conditions forM.franciscanus. Together, these results indicate current exposure to upwelling may reduce species performance and predicted future increases in upwelling frequency and intensity could affect ecosystem function by modifying the ecological roles of key species.
more »
« less
The Effects of Temperature on Cellular Physiology
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
more »
« less
- Award ID(s):
- 2125383
- PAR ID:
- 10376716
- Date Published:
- Journal Name:
- Annual Review of Biophysics
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 1936-122X
- Page Range / eLocation ID:
- 499 to 526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how altered temperature regimes affect harmful cyanobacterial bloom formation is essential for managing aquatic ecosystems amidst ongoing climate warming. This is difficult because algal performance can depend on both current and past environments, as plastic physiological changes (acclimation) may lag behind environmental change. Here, we investigate how temperature variation on sub‐weekly timescales affects population growth and toxin production given acclimation. We studied four ecologically important freshwater cyanobacterial strains under low‐ and high‐nutrient conditions, measuring population growth rate after acclimation and new exposure to a range of temperatures. Cold‐acclimated populations (15.7°C) outperformed fully acclimated populations (held in constant conditions) across 65% of thermal environments, while hot‐acclimated populations (35.7–42.6°C) underperformed across 75% of thermal environments. Over a 5‐day period, cold‐acclimatedMicrocystis aeruginosaproduced ~2.5‐fold more microcystin than hot‐acclimated populations experiencing the same temperature perturbation. Our results suggest that thermal variation and physiology interact in underappreciated ways to influence cyanobacterial growth, toxin production, and likely bloom formation.more » « less
-
Abstract One of the most reliable features of natural systems is that they change through time. Theory predicts that temporally fluctuating conditions shape community composition, species distribution patterns, and life history variation, yet features of temporal variability are rarely incorporated into studies of species–environment associations. In this study, we evaluated how two components of temporal environmental variation—variability and predictability—impact plant community composition and species distribution patterns in the alpine tundra of the Southern Rocky Mountains in Colorado (USA). Using the Sensor Network Array at the Niwot Ridge Long‐Term Ecological Research site, we used in situ, high‐resolution temporal measurements of soil moisture and temperature from 13 locations (“nodes”) distributed throughout an alpine catchment to characterize the annual mean, variability, and predictability in these variables in each of four consecutive years. We combined these data with annual vegetation surveys at each node to evaluate whether variability over short (within‐day) and seasonal (2‐ to 4‐month) timescales could predict patterns in plant community composition, species distributions, and species abundances better than models that considered average annual conditions alone. We found that metrics for variability and predictability in soil moisture and soil temperature, at both daily and seasonal timescales, improved our ability to explain spatial variation in alpine plant community composition. Daily variability in soil moisture and temperature, along with seasonal predictability in soil moisture, was particularly important in predicting community composition and species occurrences. These results indicate that the magnitude and patterns of fluctuations in soil moisture and temperature are important predictors of community composition and plant distribution patterns in alpine plant communities. More broadly, these results highlight that components of temporal change provide important niche axes that can partition species with different growth and life history strategies along environmental gradients in heterogeneous landscapes.more » « less
-
Abstract Temperature is a major driver of phytoplankton growth and physiology, but despite decades of study on temperature effects, the influence of temperature fluctuations on the growth acclimation of marine phytoplankton is largely unknown. To address this knowledge gap, we subjected a coastal phytoplankton species,Heterosigma akashiwo, to ecologically relevant temperature shifts of 2–3°C, cumulatively totaling 3–16°C across a range from 6°C to 31°C over a 3‐week period. Using a symmetric design, we show time dependent differences between growth rates and that these changes were related to the magnitude of the temperature shift, but not the direction. Cell size scaled inversely with temperature at a rate of −1.9 to −3.3%°C−1at all except the highest temperature treatments > 25°C. Intraspecific variability in growth rates increased exponentially with cumulative thermal shifts, suggesting thermal variability may be a driver of intraspecific variation. The observed acclimation effects on phytoplankton growth rates suggest that ignoring acclimation effects could systematically under or overestimate temperature‐dependent primary production. Empirical results, contextualized with in situ coastal ocean temperature record, demonstrated that daily primary production could differ from current model assumptions utilizing acclimated rates by −33% to +36%. If broadly applicable to diverse phytoplankton species, these results have ramifications for predicting the ecology and production of phytoplankton in present day dynamic ecosystems and in future climate scenarios where thermal variability is expected to increase.more » « less
-
Abstract Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen−stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS‐producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.more » « less
An official website of the United States government

